Designs, Codes and Cryptography

, Volume 5, Issue 1, pp 57–72 | Cite as

The translation planes of order 49

  • Rudolf Mathon
  • Gordon F. Royle
Article

Abstract

In this paper, we describe an exhaustive computer search for all the translation planes of order 49. The search uses the well-known correspondence between translation planes of order 49 and spreads of lines inPG(3,7). We conclude that there are exactly 1347 translation planes of order 49, and give some of their properties including group sizes and 7-ranks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    André, J. 1954. Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe.Math. Zeitschr. 60:156–186.Google Scholar
  2. 2.
    Biliotti, M., and Korchmaros, G. 1990. Some finite translation planes arising fromA 6-invariant ovoids of the Klein quadric.Geometriae Dedicata 37:29–47.Google Scholar
  3. 3.
    Bruen, A. A. 1978. Inversive geometry and some new translation planes, I.Geometriae Dedicata 7:81–98.Google Scholar
  4. 4.
    Cannon, J. J. 1984. An introduction to the group theory language Cayley. InComputational Group Theory, edited by M. Atkinson, pp. 145–183. Proc. of LMS Meeting, Durham, 1982. Academic Press, 1984.Google Scholar
  5. 5.
    Charnes, C. Quadratic matrices and the Translation Planes of order 52, Coding Theory, Design Theory, Group Theory. Proceedings of the Marshall Hall Conference. (eds. D. Jungnickel et al.) Wiley: New York. 1993, 155–161.Google Scholar
  6. 6.
    Czerwinski, T., and Oakden, D. 1992. The translation planes of order twenty-five.Journal of Combinatorial Theory Ser. A 59(2):193–217.Google Scholar
  7. 7.
    Dembowski, P. 1968.Finite Geometries. Springer-Verlag, Berlin.Google Scholar
  8. 8.
    Dempwolff, U., and Reifart, A. 1983. The classification of the translation planes of order 16.Geometriae Dedicata 15:137–153.Google Scholar
  9. 9.
    Dempwolff, U. Translation planes of order 27,Designs, Codes and Cryptography 4(2), 1994, 105–121.Google Scholar
  10. 10.
    Heimbeck, G. 1992. Translationsebenen der ordnung 49 mit einer quaterniongruppe von dehnungen.Journal of Geometry 44:65–76.Google Scholar
  11. 11.
    Heimbeck, G. 1988. Translationsebenen der ordnung 49 mit scherungen.Geometriae Dedicata 27:87–100.Google Scholar
  12. 12.
    Hughes, D. R., and Piper, F. C. 1973.Projective Planes. Graduate Texts in Mathematics 6. Springer-Verlag, New York.Google Scholar
  13. 13.
    Korchmaros, G. 1985. A translation plane of order 49 with non-solvable collineation group.Journal of Geometry 24:18–30.Google Scholar
  14. 14.
    Lüneburg, H. 1980.Translation Planes. Springer-Verlag, New York.Google Scholar
  15. 15.
    Mason, G. 1985. Some translation planes of order 72 which admitSL 2(9).Geometriae Dedicata 17: 297–305.Google Scholar
  16. 16.
    Mason, G., and Ostrom, T. G. 1985. Some translation planes of orderp 2 and of extra-special type.Geometriae Dedicata 17:307–322.Google Scholar
  17. 17.
    McKay, B. D. 1990.nauty User's Guide (version 1.5). Tech. Rpt. TR-CS-90-02, Dept. Computer Science, Austral. Nat. Univ.Google Scholar
  18. 18.
    Moorhouse, E. Two-graphs and skew two-graphs in finite geometries,in preparation.Google Scholar
  19. 19.
    Narayana Rao, M. L., Kuppuswamy Rao, K., and Joshi, V. 1987. A translation plane of order 49 with orbit structure 2, 16 and 32.Journal of Combinatorics, Information and System Sciences 12:41–50.Google Scholar
  20. 20.
    Narayana Rao, M. L., Kuppuswamy Rao, K., and Joshi, V. 1989. A translation plane of order 49 with 48 ideal points in a single orbit.Indian Journal of Mathematics 31:89–97.Google Scholar
  21. 21.
    Narayana Rao, M. L., Kuppuswamy Rao, K., and Joshi, V. 1993. A translation plane of order 72 with a very small translation complement.Graphs and Combinatorics 9:255–263.Google Scholar
  22. 22.
    Veblen, O., and Wedderburn, J. H. M. 1907. Non-desarguesian and non-pascalian geometries.Trans. Amer. Math. Soc. 8:379–388.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Rudolf Mathon
    • 1
  • Gordon F. Royle
    • 2
  1. 1.Department of Computer ScienceUniversity of Western AustraliaNedlandsAustralia
  2. 2.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations