Skip to main content
Log in

Asymmetric syntheses of pipecolic acid and derivatives

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Results in the field of asymmetric synthesis of pipecolic acid derivatives are reviewed. Three sections describe the asymmetric syntheses of the title compounds (i) from the chiral pool (α-amino acids or carbohydrates) (ii) using a chiral auxiliary either derived from terpenes,α-amino acids, tartaric acid, an amine orβ-amino alcohols (iii) by means of asymmetric catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agami C, Couty F (1990) Enantioselective synthesis of pipecolic acid derivatives via an ene iminium cyclisation. Synlett: 731–732

  • Agami C, Couty F, Lin J, Mikaeloff A, Poursoulis M (1993) Asymmetric synthesis ofα-amino acids via cationic aza-Cope rearrangements. Tetrahedron 49: 7239–7250

    Google Scholar 

  • Agami C, Hamon L, Kadouri-Puchot C, Le Guen V (1996a) Enantioselective synthesis of conformationally restricted analogues of NMDA:cis- andtrans-piperidine 2,3dicarboxylic acids and methylated derivatives. J Org Chem61: 5736–5742

    Google Scholar 

  • Agami C, Couty F, Mathieu H (1996b) Cyclisation of a chiral oxazolidine as a key step for the synthesis of functionalized piperidines. Tetrahedron Lett 37: 4001–4002

    Google Scholar 

  • Agami C, Bihan D, Morgentin R, Puchot-Kadouri C (1997) Asymmetric synthesis of unsaturated pipecolic acid derivatives. Synlett: 799–800

  • Ahman J, Somfai P (1995) Enantioselective total synthesis of (−)-indolizidines 209B and 209D via a highly efficient aza-[2,3]-Wittig rearrangement of vinylaziridines. Tetrahedron 51: 9747–9756

    Google Scholar 

  • Aketa K, Terashima S, Yamada S (1976) Synthesis ofL andD pipecolic acid from Llysine. Chem Pharm Bull 24: 621–630

    Google Scholar 

  • Andrews MD, Brewster AG, Moloney MG, Owen KL (1995) Convenient synthesis of enantiopure cyclicα-hydroxyalkylα-aminoesters. J Chem Soc Perkin Trans I: 227–228

    Google Scholar 

  • Bailey PD, Bryans JS (1988) Chiral synthesis of 5-hydroxy-(L)-pipecolic acids from (L)glutamic acid. Tetrahedron Lett 29: 2231–2234

    Google Scholar 

  • Bailey PD, Brown GR, Korber F, Reed A, Wilson RD (1991) Asymmetric synthesis of pipecolic acid derivatives using the aza Diels-Alder reaction. Tetrahedron: Asymmetry 2: 1263–1282

    Google Scholar 

  • Bashyal BP, Chow HF, Fleet GW (1986) Enantiospecific syntheses 2S,3R,4R,5S-trihydroxy pipecolic acid, 2R,3R,4R,SS-trihydroxypipecolic acid. 2S,4S,5S-dihydroxypipecolic acid, and bulgecinine fromD-glucuronolactone. Tetrahedron Lett 27:3205–3208

    Google Scholar 

  • Bashyal BP, Chow HF, Fellows LE, Fleet GW (1987a) The synthesis of polyhydroxylated amino acids from glucuronolactone: enantiospecific syntheses of 2S,3R,4R,5Strihydroxy pipecolic acid, 2R,3R,4R,SS-trihydroxypipecolic acid and 2R,3R,4Rdihydroxyproline. Tetrahedron 43: 415–422

    Google Scholar 

  • Bashyal BP, Chow HF, Fleet GW (1987b) Synthesis of 2S,4S,5S-dihydroxypipecolic acid and bulgecinine fromD-glucuronolactone; a strategy for the synthesis of 2S,4S-4hydroxy-α-amino acids. Tetrahedron 43: 423–430

    Google Scholar 

  • Baumberger F, Vasella A, Schauer R (1988) Synthesis of new sialidase inhibitors, 6amino-6-deoxysialic acids. Helv Chim Acta 71: 429–445

    Google Scholar 

  • Beaudegnies R, Ghosez L (1994) Asymmetric Diels-Alder reactions with chiral 1azadienes. Tetrahedron: Asymmetry 5: 557–560

    Google Scholar 

  • Bernotas RC, Ganem B (1985) Synthesis of 2S-carboxy-3R,4R,5S-trihydroxypiperidine, a naturally occuring inhibitor ofβ-D-glucuronidase. Tetrahedron Lett 26: 4981–4982

    Google Scholar 

  • Berrien JF, Royer J, Husson HP (1994) A new access to enantiomerically pure (S)-(-)pipecolic acid and 2- or 6-alkylated derivatives. J Org Chem 59: 3769–3774

    Google Scholar 

  • Bruce I, Fleet GW, Cenci di Bello I, Winchester B (1992) Iminoheptilols as glycosidase inhibitors: synthesis of a-homomannojirimycin, 6-epi-α-homomannojirimycin and of a highly substituted pipecolic acid. Tetrahedron 46: 10191–10200

    Google Scholar 

  • Callens REA, Anteunis MJO, Reyniers F (1982) Preparation oftrans-5-hydroxy-L-pipecolic acid fromL-baikiain (1,2,5,6-L-tetrahydropyridine-2-carboxylic acid). Bull Soc Chim Belg 91: 713–723

    Google Scholar 

  • Chen HG, Goel OP (1995) Pictet Spengler cyclisation of 3, 3-diphenylalanine, synthesis of optically pure 1,2,3,4-tetrahydro 4-phenyl-3-isoquinolinecarboxylicacids, novelα-amino acids for peptides of biological interest. Synth Commun 25: 49–56

    Google Scholar 

  • Chênevert R, Morin MP (1996) Chemoenzymatic synthesis of both enantiomers of cis-6hydroxymethylpipecolic acid. Tetrahedron: Asymmetry 7: 2161–2164

    Google Scholar 

  • Clinch K, Vasella A, Schauer R (1987) Synthesis of (2R,4R,5S)-5-acetamido-4-hydroxypipecolinic acid as a potential inhibitor of sialidases. Tetrahedron Lett 28: 6425–6428

    Google Scholar 

  • Copeland TD, Wondrak EM, Tozner J, Roberto MM, Oraszlan S (1990) Substitution of proline with pipecolic acid at the scissile bound converts a peptide substrate of HIV proteinase into a selective inhibitor. Biochem Biophys Res Commun 169: 310–314

    PubMed  Google Scholar 

  • Czarnocki Z, Suh D, Mac Lean DB, Hultin PG, Szarek WA (1992) Enantioselective synthesis of 1-substituted tetrahydroisoquinoline-l-carboxylic acids. Can J Chem 70: 1555–1561

    Google Scholar 

  • Del Bosco M, Johnstone ANC, Bazza G, Lopatriello S, North M (1995) The asymmetric synthesis of γ-substituted glutamic acid derivativesvia a glutamic acid γ-enolate synthon. Tetrahedron 51: 8545–8554

    Google Scholar 

  • Fleet GW, Witty DR (1990) Synthesis of homochiralβ-hydroxy-α-amino-acids[(2S,3R,4R)-3,4-dihydroxyproline and (2S,3R,4R)-3,4-dihydroxypipecolic acid] and of 1,4-dideoxy-1,4-imino-D-arabinitol [DAB1] and fagomine [1,5-imino-1,2,5trideoxy-D-arabin-hexitol]. Tetrahedron: Asymmetry 1: 119–136

    Google Scholar 

  • Fleet GW, Ramsden NG, Witty DR (1989) A practical synthesis of deoxymannojirimycin and of (2S,3R,4R,5R)-3,4,5-trihydroxypipecolic acid fromD-glucose. Tetrahedron 45: 327–336

    Google Scholar 

  • Foti CJ, Comins DJ (1995) Synthesis and reaction ofα-(trifluoromethanesulfonyloxy) enecarbamate prepared from N-acyllactams. J Org Chem 60: 2656–2657

    Google Scholar 

  • Fujii T, Miyoshi M (1975) A novel synthesis of L-pipecolic acid. Bull Chem Soc Jpn 48: 1341–1342

    Google Scholar 

  • Fujita Y, Irrevere F, Witkop B (1963) Conversion of baikiain intotrans-5- andtrans-4-hydroxypipecolic acids by hydroboration. J Am Chem Soc 86: 1844–1846

    Google Scholar 

  • Gillard J, Abraham A, Anderson PC, Beaulieu PL, Bogri T, Bousquet Y, Grenier L, Guse I, Lavallée P (1996) Preparation of (2S,4R)-4-hydroxypipecolic acid and derivatives. J Org Chem 61: 2226–2231

    Google Scholar 

  • Glänzer B, Györgydeàk Z, Bernet B, Vasella A (1991) Analogues of sialic acids as potential sialidase inhibitors. Synthesis of C6 and C7 analogues of N-acetyl-6-amino2,6-dideoxyneuraminic acid. Helv Chim Acta 74: 343–369

    Google Scholar 

  • Golubev A, Sewald N, Burger K (1995) An efficient approach to the family of 4-substituted pipecolic acids. Syntheses of 4-oxo-,cis-4-hydroxy- andtrans 4-hydroxy-L-pipecolic acids fromL-aspartic acid. Tetrahedron Lett 36: 2037–2040

    Google Scholar 

  • Greek C, Ferreira F, Genêt JP (1996) Synthesis of both enantiomers oftrans 3-hydroxypipecolic acid. Tetrahedron Lett 37: 2031–2034

    Google Scholar 

  • Guntha S, Mereyala HB (1994) Stereospecific route for the synthesis of 1,5-lactams: synthesis of (2S,3S,4R,5R)-methyl-3,4,5-triphenyl-methyleneoxy-6-oxo-piperidine-2carboxylate. Tetrahedron Lett 27: 4869–4870

    Google Scholar 

  • Hanson GJ, Russell MA (1989) Stereoselective Δ4-pipecolic acids synthesesvia alkylation of a vinyl N-Boc-iminium ion derived from baikiain. Tetrahedron Lett 30: 5751–5754

    Google Scholar 

  • Herdeis C, Engel W (1991) Synthesis of unnatural (2R,5R)-5-hydroxypipecolic acid via homochiral acyliminium ion. Pipecolic acid part III. Tetrahedron: Asymmetry 2: 945–948

    Google Scholar 

  • Herdeis C, Heller E (1993) Synthesis of (2S,5S)-and (2R,5S)-5-hydroxypipecolic acid via amide methylenation of (S)-5-hydroxy-2-piperidone with dimethyltitanocene. Tetrahedron: Asymmetry 4: 2085–2094

    Google Scholar 

  • Herdeis C, Held WA, Kirfel A (1994) Synthesis of (2R,5S)-5-choloropipecolic acid via a homochiral acyliminium ion intermediate. Liebigs Ann Chem: 1117–1120

  • Hermitage SA, Moloney MG (1994) A short approach to functionalised homochiral piperidones. Tetrahedron: Asymmetry 5: 1463–1464

    Google Scholar 

  • Hoarau S, Fauchère JL, Pappalardo L, Roumestant ML, Viallefont P (1996) Synthesis of enantiomerically pure (2R,5S)- and (2R,5R)-5-hydroxypipecolic acids from glycinate Shiff bases. Tetrahedron: Asymmetry 7: 2585–2593

    Google Scholar 

  • Ireland RE, Gleason JL, Gegnas LD, Highsmith TK (1996) A total synthesis of FK-506. J Org Chem 61: 6856–6872

    PubMed  Google Scholar 

  • Irie K, Aoe K, Tanaka T, Saito S (1985) Stereoselective nucleophilic substitution of 6-methoxy-l-methoxycarbonylpipecolate: enantioselective synthesis of (+)-sedamine fromL-lysine. J Chem Soc Chem Commun 633–635

  • Jackson RFW, Graham LJ, Rettie AB (1994) Synthesis of 4-oxopipecolic acid and 4oxolysine using a palladium-catalysed coupling process. Tetrahedron Lett 35: 4417–4418

    Google Scholar 

  • Kazmiersky WM, Hruby VY (1988) A new approach to receptor ligand design: synthesis and conformation of a new class of potent and highly selective μ opioid antagonists utilising tetrahydroisoquinoline carboxylic acid. Tetrahedron 44: 697–710

    Google Scholar 

  • Kazmiersky WM, Urban czyk-Lipkowska Z, Hruby V (1994) New amino acid for the topographical control of peptide conformation: synthesis of all the isomers ofα,β-dimethylphenylalanine andα,β-dimethyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid of high optical purity. J Org Chem 59: 1789–1795

    Google Scholar 

  • Kemp DS, Sun ET (1982) Amino acid derivatives that stabilize secondary structures of polypeptides. Synthesis of L-3-amino-2-piperidine-6-carboxylic acid: a novelβ-turn forming amino acid. Tetrahedron Lett 23: 3759–3760

    Google Scholar 

  • Ki HP, Yoon YJ, Lee SG (1994) Simple synthesis of (−)-deoxymannojirimycin and (2S,3R,4R,5R)-3,4,5-trihydroxypipecolic acid via regioselective hydrolysis. J Chem Soc Perkin Trans I: 2621–2623

    Google Scholar 

  • Kisfaludy L, Korenczki F (1982) One step synthesis ofL-piperidine-2-carboxylic acid. Synthesis: 163

  • Leistner E, Spenser ID (1973) Biosynthesis of the piperidine nucleus. Incorporation of chirally labelled [1,3H] cadaverine. J Am Chem Soc 95: 4715–4725

    PubMed  Google Scholar 

  • Mellor JM, Richards NGJ, Sargood KJ, Anderson DW, Chamberlin SG, Davies DE (1995) Synthesis of fragments of transforming growth factors alpha incorporating exo2-azabicyclo[2,2,1]heptane-3-caboxylic acids as proline substitutes. Tetrahedron Lett 36:6765–6768

    Google Scholar 

  • Murray PJ, Starkey ID (1996) The enantiospecific synthesis of functionalised pipecolic acids as constrained analogues of lysine. Tetrahedron Lett 37: 1875–1878

    Google Scholar 

  • Myers AG, Gleason JL, Yoon T (1995) A practical method for the synthesis of D- of Lα-amino acids by the alkylation of (+)- or (−)-pseudoephedrine glycinamides. J Am Chem Soc 117: 8488–8489

    Google Scholar 

  • Ng-Yours-Chen MC, Serriqui AN, Huang Q, Kazlauskas RJ (1994) Kinetic resolution of pipecolic acids using partially-purified lipase fromAspergillus niger. J Org Chem 59: 2075–2081

    Google Scholar 

  • Nicolaou KC, Chakraborty TK, Piscopio AD, Minowa N, Bertinato P (1993) Total synthesis of Rapamycin. J Am Chem Soc 115: 4419–4420

    Google Scholar 

  • Norbeck DW, Kramer JB (1987) Synthesis of azacyclic 2-deoxy-KDO. Tetrahedron Lett 28:773–776

    Google Scholar 

  • Ojima I, Tzamarioudaki M, Eguchi M (1995) New and efficient route to pipecolic acid derivatives by means of Rh-catalysed intramolecular cyclohydrocarbonylation. J Org Chem 60: 7078–7079

    Google Scholar 

  • Okamoto S, Hijikata A, Kikumoto R, Tonomura S, Hara H, Ninomiya K, Maruyama A, Sugano M, Tamao Y (1981) Potent inhibition of thrombin by the newly synthesized arginine derivative N°805. The importance of the stereostructure of its hydrophobic carboxamide portion. Biochem Biophys Res Commun 101: 440–446

    PubMed  Google Scholar 

  • O'Reilly NJ, Derwin WS, Lin HC (1990) Optically pure (S)-6,7-dimethoxy-1,2,3,4-tetrahydro-3-isoquinoline carboxylic acid and asymmetric hydrogenation studies related to its preparation. Synthesis: 550–555

  • Ornstein PL, Shaus JM, Chambers JW, Huser DL, Leander JD, Wong DT, Paschal JW, Jones ND, Deeter JB (1989) Synthesis and pharmacology of a series of 3- and 4(phosphonoalkyl)pyridine and piperidine-2-carboxylic acids. Potent N-methyl-Daspartate receptor antagonists. J Med Chem 32: 827–833

    PubMed  Google Scholar 

  • Paulsen H, Mickel E (1973) Synthese and Reaktionen von 5-Amino-5-Desoxy-L-iduronsäure. Chem Ber 106: 1525–1536

    Google Scholar 

  • Schöllkopf U, Hinrichs S, Lonsky R (1987) Asymmetric synthesis of cyclicα-amino acids by the bislactim ether method. Angew Chem Int Ed English 26: 143–145

    Google Scholar 

  • Seebach D, Fitzi R (1986) Enantiomer separation of (R,S)-2-(eort-butyl)-3-methyl-4-imidazolidirione, a chiral building block for amino acids synthesis. Angew Chem Int Ed English 25: 345–346

    Google Scholar 

  • Tong MK, Blumenthal EM, Ganem B (1990) Inhibition of plant glycosidase by a D-galacturonic acid analogue. Tetrahedron Lett 31: 1683–1684

    Google Scholar 

  • Trova MP, McGee Jr KF (1995) Asymmetric synthesis of optically active decahydro isoquinolines useful in HIV-1 protease inhibitor synthesis. Tetrahedron 51: 5951–5954

    Google Scholar 

  • Tuller BF, Bolen CH (1969) 1-butyl-2′,6′-pipecoloxilidide. British Patent 1-166-802. Chem Abs (1970) 72: 43429a

    Google Scholar 

  • Verschueren K, Toth G, Tourwé D, Lebl M, Van Binst G, Hruby V (1992) A facile synthesis of 1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid, a conformationally cons trained tyrosine analogue. Synthesis: 458–459

  • Wanner KT, Stamenitis S (1993) Asymmetrische Synthesen mit chiralen 1,4-Oxazin 2,5-Dionen: Darstellung enantiomerenreiner 2-substitutierter Pipecolinsäure Derivate. Liebigs Ann Chem: 477–484

  • Williams PD, Bock MG, Tung RD, Garsky VM, Perlow DS, Erb JM, Lundell GF, Gould NP, Whitter WL, Hoffman JB, Kaufman MJ, Bradely BV, Clineschmidt V, Pettibone DJ, Freidinger RM, Veber DF (1992) Development of a novel class of cyclic hexapeptides oxytocin antagonists based on a natural product. J Med Chem 35: 3905–3918

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couty, F. Asymmetric syntheses of pipecolic acid and derivatives. Amino Acids 16, 297–320 (1999). https://doi.org/10.1007/BF01388174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388174

Keywords

Navigation