Skip to main content
Log in

How to build optically activeα-amino acids

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Various methodologies published in the literature dealing withα-amino carboxylic acid asymmetric synthesis are presented in a digest form. In each case, only some recent or most typical works are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adger B, Berens U, Griffiths M, Kelly M, McCague R, Miller J, Palmer Ch, Roberts S, Selke R, Vitinius U, Ward G (1997) Chemoenzymatic synthesis of a novel ligand for rhodium-catalysed asymmetric hydrogenation. Chem Commun: 1713–1714

  • Aebi J, Seebach D (1985) Enantioselektiveα-Alkylierung von Asparagin- und Glutamins5ure über die Dilithium-Enolatecarboxylate von 2-[3-benzoyl-2-(tertbutyl)-1-methyl-5-oxoimidazolidin-4-yl]Essigsäure und 3-[3-benzoyl-2-(tert-butyl)-1methyl-5-oxoimidazolidin-4-yl]Propionsäure. Helv Chim Acta 68:1507–1518

    Google Scholar 

  • Almena Perea J, Börner A, Knochel P (1998) A versatile modular approach to new chiral C2-symmetrical ferrocenyl ligands: highly Enantioselektive Rh-catalyzed hydrogenation ofα-acetamidoacrylic acid derivatives. Tetrahedron Lett 39: 8073–8076

    Google Scholar 

  • Beckwith A, Chai C (1990) Diastereoselective radical addition to derivatives of dehydroalanine and of dehydrolactic acid. J Chem Soc Chem Commum: 1087–1088

  • Beylin V, Chen H, Dunbar J, Goel O, Harter W, Marlatt M, Topliss J (1993) Cyclic derivatives of 3,3-diphenylalanine (DIP) (II), novelα-amino acids for peptides of biological interest. Tetrahedron Lett 34: 953–956

    Google Scholar 

  • Bravo P, Crucianelli M, Vergani B, Zanda M (1998) Sulfinimines of trifluoropyruvate: novel intermediates for chiral non racemicα-trifluoromethylα-amino acids. Tetrahedron Lett 39: 7771–7774

    Google Scholar 

  • Burchat A, Chong J, Park S (1993) Observations on Sn-Li exchange inα-aminoorganostannanes and the configurational stability of non-stabilized aaminoorganolithiums. Tetrahedron Lett 34: 51–54

    Google Scholar 

  • Calderari G, Seebach D (1985) Stereoselektive Alkylierung chiraler, nicht racemischer Enolate durch Nitroolefine. Herstellung enantiomerenreinerγ-Aminobuttersäure-und Bernsteinsaure-Derivate. Helv Chim Acta 68: 1592–1604

    Google Scholar 

  • Calmes M, Daunis J, Mai N (1997a) Asymmetric synthesis ofα-amino acidsvia diastereoselective addition of (R)-pantolactone to their ketenes. Tetrahedron Asymm 8:1641–1648

    Google Scholar 

  • Calmes M, Daunis J, Mai N (1997b) Tertiary amines: a decisive factor in the stereoselective addition of (R)-pantolactone to N-phthalyl valine ketene. Tetrahedron 53:13719–13726

    Google Scholar 

  • Cardani S, Bernardi A, Colombo L, Gennari C, Scolastico C, Venturini I (1988) Asymmetric synthesis of functionalizedα-amino-β-hydroxy acids via chiral norephedrine-derived oxazolidines. Tetrahedron 44: 5563–5572

    Google Scholar 

  • Cativiela C, Diaz-de-Villegas M, Galvez J (1992) Efficient asymmetric synthesis of amino acids through hydrogenation of the didehydroamino acid residue in cyclic imino-ester derivatives. Tetrahedron Asymm 3: 567–572

    Google Scholar 

  • Chaari M, Jenhi A, Lavergne J-P, Viallefont Ph (1991) Synthese enantiosélective d'α-aryl amino acides: substitution nucléophile aromatique sur le fluorobenzène chrome tricarbonyle d'énolates chiraux. J Organomet Chem 401: C10–C13

    Google Scholar 

  • Chai Ch, King A (1995) Methylene piperazine-2,5-diones as templates for the synthesis of amino acid derivatives. Tetrahedron Lett 36: 4295–4298

    Google Scholar 

  • Chen H, Beylin V, Marlatt M, Leja B, Goel O (1992) Chiral synthesis of D- and L-3,3diphenylalanine (DIP), unusualα-amino acids for peptides of biological interest. Tetrahedron Lett 33: 3293–3296

    Google Scholar 

  • Corey E, Xu F, Noe M (1997) A rational approach to catalytic enantioselective enolate alkylation using a structurallly rigidified and defined quaternary ammonium salt under phase transfer conditions. J Am Chem Soc 119: 12414–12415

    Google Scholar 

  • Corey E, Noe M, Xu F (1998) Highly enantioselective synthesis of cyclic and functionalizedα-amino acids by means of chiral phase transfer catalyst. Tetrahedron Lett 39: 5347–5350

    Google Scholar 

  • Davies J, Barrett G, Biagini S, Elmore D, Littlechild J, North M, Schofield C, Thirkettle J, Walter M, Williams P (1997) Amino acids and proteins, vol 28. A specialist periodical report. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Davis F, Fanelli D (1998) Sulfinimine-mediated asymmetric synthesis of (R)-(4-methoxy3,5-dihydroxyphenyl)glycine: the central aminoacid of vancomycin and related agents. J Org Chem 63: 1981–1985

    Google Scholar 

  • Davis F, Reddy R, Portonovo P (1994a) Asymmetric Strecker synthesis using enantiopure sulfinimines: a convenient synthesis ofα-amino acids. Tetrahedron Lett 35: 9351–9354

    Google Scholar 

  • Davis F, Zhou P, Reddy R (1994b) Asymmetric synthesis and reactions of cis-N(p-toluenesulfinyl)aziridine-2-carboxylic acids. J Org Chem 59: 3243–3245

    Google Scholar 

  • Davis F, Portonovo P, Reddy R, Chin Y (1996a) Asymmetric Strecker synthesis using enantiopure sulfinimines and diethylaluminium cyanide: the alcohol effect. J Org Chem 61: 440–441

    PubMed  Google Scholar 

  • Davis F, Liu H, Reddy G (1996b) 2-MethylN-(p-toluenesulfinyl)aziridine-2-carboxylic acid: asymmetric synthesis ofα-methylphenylalanine andα-methyl-β-phenylserine. Tetrahedron Lett 37: 5473–5476

    Google Scholar 

  • Davis F, Zhou P, Chen B-C (1998) Asymmetric synthesis of amino acids using sulfinimines (thiooxime S-oxides). Chem Soc Rev 27: 13–18

    Google Scholar 

  • Decicco C, Grover P (1997) Asymmetric amino acid synthesis: Mitsunobu reaction on chiral cyanohydrins. Synlett: 529–530

  • Drury W, Ferraris D, Cox Ch, Young B, Lectka T (1998) A novel synthesis ofα-amino acid derivatives through catalytic, enantioselective ene reactions ofα-imino esters. J Am Chem Soc 120:11006–11007

    Google Scholar 

  • Duhamel L, Plaquevent J-C (1978) Deracemization by enantioselective protonation. A new method for the enantiomeric enrichment ofα-amino acids. J Am Chem Soc 100: 7415–7416

    Google Scholar 

  • Duhamel L, Plaquevent J-C (1980) Deracemization by enantioselective protonation IV: an improved method for the enantiomeric enrichment ofα-amino acids using metalation by means of chiral amides. Tetrahedron Lett 21: 2521–2524

    Google Scholar 

  • Duhamel L, Duhamel P, Launay J-C, Plaquevent J-C (1984) Asymmetric protonations. Bull Soc Chim Fr 11: 421–430

    Google Scholar 

  • Duhamel L, Fouquay S, Plaquevent J-C (1986) Ligand exchange in asymmetric reactions of lithium enolates: application to the deracemization ofα-amino acids. Tetrahedron 27:4975–4978

    Google Scholar 

  • Duhamel L, Duhamel P, Fouquay S, Eddine J, Peschard O, Plaquevent J-C, Ravard A, Solliard R, Valnot J-Y, Vincens H (1988) Enantioselective electrophilic bond construction to theα-carbon ofα-amino acids. Tetrahedron 44: 5495–5506

    Google Scholar 

  • Duthaler R (1994) Recent developments in the stereoselective synthesis ofα-amino acids. Tetrahedron 50: 1539–1650

    Google Scholar 

  • Easton Ch (1997) Free-radical reactions in the synthesis ofα-amino acids and derivatives. Chem Rev 97: 53–82

    PubMed  Google Scholar 

  • Efferberger F, Burkard U, Wilfahrt J (1983) Trifluoromethanesulfonates ofα-hydroxy carboxylates — Educts for the racemization — Free synthesis of N-substitutedα-amino acid. Angew Chem Int Ed Engl 22: 65–66

    Google Scholar 

  • El Achqar M, Boumzebra M, Roumestant M-L, Viallefont Ph (1988) 2-Hydroxy-3-pinanone as chiral auxiliary in the asymmetric synthesis ofα-amino acids. Tetrahedron 44: 5319–5332

    Google Scholar 

  • Erdik E, Ay M (1989) Electropilic amination of carbanions. Chem Rev 89: 1947–1980

    Google Scholar 

  • Evans D, Ellman J (1989) The total syntheses of the isodityrosine-derived cyclic tripeptides 0F4949-111 and K-13. Determination of the absolute configuration of K-13. J Am Chem Soc 111: 1063–1072

    Google Scholar 

  • Evans D, Britton T, Dorow R, Dellaria J (1986) Stereoselective amination of chiral enolates. A new approach to the asymmetric synthesis ofα-hydrazino- andα-aminoacid derivatives. J Am Chem Soc 108: 6395–6397

    Google Scholar 

  • Evans D, Britton T, Ellman J, Dorow R (1990a) The asymmetric synthesis ofα-amino acids. Electrophilic azidation of chiral imide enolates, a pratical approach to the synthesis of (R)- and (S)-α-azido carboxylic acids. J Am Chem Soc 112: 4011–4030

    Google Scholar 

  • Evans D, Urpi F, Somers T, Clark J, Bilodeau M (1990b) New procedure for the direct generation of titanium enolates. Diastereoselective bond constructions with representative electrophiles. J Am Chem Soc 112: 8215–8216

    Google Scholar 

  • Farr R (1998) Synthesis of chiral 3-substituted isoxazolines. Tetrahedron Lett 39: 195–196

    Google Scholar 

  • Fehr Ch (1996) Enantioselective protonation of enolates and enols. Angew Chem Int Ed Engl 35: 2566–2587

    Google Scholar 

  • Fiaud J-C, Kagan H (1970) Une nouvelle synthèse d'α-amino acides. Synthèse asymétrique de l'alanine. Tetrahedron Lett 21: 1813–1816

    PubMed  Google Scholar 

  • Fiaud J-C, Kagan H (1971) Synthèse asymétrique d'acides aminés. Etude de l'addition d'organometalliques sur les imines glyoxyliques. Tetrahedron Lett 22: 1019–1022

    Google Scholar 

  • Fioravanti S, Loreto A, Pellacani L, Sabbatini F, Tardella P (1994) Asymmetric synthesis of N-(ethoxycarbon yl)-β-methylphenylat an in e esters. Tetrahedron Asymm 5: 473–478

    Google Scholar 

  • Fryzuk M, Bosnich B (1977) Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation. J Am Chem Soc 99: 6262–6267

    PubMed  Google Scholar 

  • Fuji K, Kawabata T (1998) Memory of chirality — A new principle in enolate chemistry. Chem Eur J 4: 373–376

    Google Scholar 

  • Galvez N, Moreno-Manas M, Vallribera A, Molins E, Cabrero A (1996) Cobalt-mediated alkylation of (4R) and (4S)-3-acetoacetyl-4-benzyloxazolidin-2-ones. Preparation of enantiopure diphenylmethyl-, 9-fluorenyl- and (1-adanmantyl)glycines. Tetrahedron Lett 37: 6197–6200

    Google Scholar 

  • Genêt J, Maillart S, Greek C, Pivereau E (1991) Electrophilic amination: first transfer of NHBoc with Li t-butyl-N-tosyloxycarbamate. Tetrahedron Lett 32: 2359–2362

    Google Scholar 

  • Gennari C, Colombo L, Bertolini G (1986) Asymmetric Eecrophilic amination: synthesis ofα-amino acids andα-hydrazino acids with high optical purity. J Am Chem Soc 108: 6394–6395

    Google Scholar 

  • Gittins C, North M (1997) Studies on the scope and applications of the catalysed asymmetric addition of organolithium reagents to imines. Tetrahedron Asymm 8: 3789–3799

    Google Scholar 

  • Hamon D, Massy-Westropp R, Razzino P (1992) The asymmetric synthesis ofα-amino acids via the addition of Grignard reagents to imine derivatives. Tetrahedron 48: 5163–5178

    Google Scholar 

  • Harada K (1963) Asymmetric synthesis ofα-amino acids by the Strecker synthesis. Nature 200: 1201

    PubMed  Google Scholar 

  • Harwood L, Tyler S, Anslow A, MacGilp I, Drew M (1997) Synthesis of enantiomerically pureα-amino acids via chemo- and diastereoselective alkylation of (5S)-5-phenyl-5,6-dihydro-2H-1,4-oxazin-2-one. Tetrahedron Asymm 8: 4007–4010

    Google Scholar 

  • Hegedus L (1995) Synthesis of amino acids and peptides using chromium carbene complex photochemistry. Acc Chem Res 28: 299–305

    Google Scholar 

  • Hegedus L, Lasrea E, Narukawa Y, Snustad D (1992) Asymmetric synthesis of (S)- and (R)-[2-2H1]glycine via photolysis of optically active chromium complexes: a comparison of stereoselectivity between chromium ketene complexes, ketenes, and ester enolates, J Am Chem Soc 114: 2991–2994

    Google Scholar 

  • Hua D, Lagneau N, Wang H, Chen J (1995) Asymmetric synthesis ofα-amino acids via chiral N-alkylidenesulfinamides. Tetrahedron Asymm 6: 349–352

    Google Scholar 

  • Iyer M, Gigstad K, Namdev N, Lipton M (1996) Asymmetric catalysis of the Strecker amino acid synthesis by a cyclic dipeptide. Amino Acids 11: 259–268

    Google Scholar 

  • Jeaqjean F, Pérol N, Gore J, Fournet G (1997) Asymmetric carboxylation in the synthesis of L-methionine: a new tool for14C chemistry. Tetrahedron Lett 38: 7547–7550

    Google Scholar 

  • Josien H, Chassaing G (1992) Asymmetric synthesis of the diastereoisomers of L-1indanylglycine and L-1-benz[f]indanylglycine, x1,x2-constrained side-chain derivatives of L-phenylalanine and L-2-naphthylalanine. Tetrahedron Asymm 3: 1351–1354

    Google Scholar 

  • Jumnah R, Williams A, Williams J (1995) Synthesis of enantiomerically enrichedα-amino acid derivatives via transition metal catalysed procedures. Synlett: 821–822

  • Kagan H, Dang T (1972) Asymmetric catalytic reduction with transition metal complexes. I. A catalytic system of rhodium(I) with (−)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine. J Am Chem Soc 94: 6429–6433

    Google Scholar 

  • Kawabata T, Wirth T, Yahiro K, Suzuki H, Fuji K (1996) Memory of chirality: direct asymmetricα-alkylation of phenylalanine derivatives. ICR Annu Rep 3: 36–37

    Google Scholar 

  • Kober R, Papadopoulos K, Miltz W, Enders D, Steglich W (1985) Synthesis of diastereoand enantiomerically pureα-amino-γ-oxo acid esters by reaction of acyliminoacetates with enamines derived from 6-membered ketones. Tetrahedron 41: 1693–1701

    Google Scholar 

  • Kochetkov K, Belikov V (1987) Modern asymmetric synthesis ofα-aminoacids. Russian Chem Rev 56: 1045–1067

    Google Scholar 

  • Krause N, Ebert S, Haubrich A (1997) Diastereoselective protonation of chiral enolates with chelating proton donors under reagent control: scope, mechanism and applications. Liebigs Ann/Recueil: 2409–2418

  • Kreuzfeld H, Döbler Ch, Schmidt U, Krause H (1996) Synthesis of non-proteinogenic (D- or (L)-amino acids by asymmetric hydrogenation. Amino Acids 11: 269–282

    Google Scholar 

  • Kubo A, Kubota H, Takahashi M, Nunami K-I (1996) Dynamic kinetic resolution utilizing 2-oxoimidazolidine-4-carboxylate as a chiral auxiliary: stereoselective synthesis ofα-amino acids by Gabriel reaction. Tetrahedron Lett 37: 4957–4960

    Google Scholar 

  • Legters J, Willems J, Thijs L, Zwanenburg B (1992) Synthesis of functionalized amino acids by ring-opening reactions of aliphatically substituted aziridine-2-carboxylic esters. Reel Trav Chim Pays-Bas 111: 59–68

    Google Scholar 

  • Liao S, Hruby V (1996) Asymmetric synthesis of optically pureβ-isopropyl phenylalanine: a newβ-branched unusual amino acid. Tetrahedron Lett 37: 1563–1566

    Google Scholar 

  • Lundquist J, Dix T (1998) Asymmetric synthesis of\(\varpi \)-bromo-2(S)-azido acids as precursors for the synthesis of novel amino acids. Tetrahedron Lett 39: 775–778

    Google Scholar 

  • Lygo B, Wainwright Ph (1997) A new class of asymmetric phase-transfer catalysts derived from Cinchona alkaloids - Application in the enantioselective synthesis ofα-amino acids. Tetrahedron Lett 38: 8595–8598

    Google Scholar 

  • McIntoch J, Mishra P (1986) Alkylation of camphor imines of glycinates. Diastereoselectivity as a function of electronic factors in the alkylating agent. Canad J Chem 64: 726–731

    Google Scholar 

  • McIntoch J, Leavitt R, Mishra P, Cassidy K, Drake J, Chadha R (1988) Diastereoselective alkylation guided by electrophile-nucleophileπ-interactions. J Org Chem 53: 1947–1952

    Google Scholar 

  • Miyabe H, Ushiro C, Naito T (1997) Highly diastereoselective radical addition to glyoxylic oxime ether: asymmetric synthesis ofα-amino acids. Chem Comm: 1789–1790

  • Miyashita A, Yasuda A, Takaya H, Totiumi K, Ito T, Souchi T, Noyori R (1980) Synthesis of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation ofα-(acylamino)acrylic acids. J Am Chem Soc 102: 7932–7934

    Google Scholar 

  • Morgan P, Whiting A, McCague R (1996) An asymmetric synthesis ofα-amino acid derivatives from racemic ethyl N-phenylsulphonyl-α-bromoglycinate using homochiral aluminium complexes. Tetrahedron Lett 37: 4795–4796

    Google Scholar 

  • Myers A, Gleason J, Yoon T, Kung D (1997) Highly practical methodology for the synthesis of D- and L-α-amino acids and N-methyl-α-amino acids. J Am Chem Soc 119:656–673

    Google Scholar 

  • O'Donnell M, Bennett W, Wu S (1989) The stereoselective synthesis ofα-amino acids by phase-transfer catalysis. J Am Chem Soc 111: 2353–2355

    Google Scholar 

  • O'Donnell M, Delgado F, Hostettler C, Schwesinger R (1998) An efficient homogeneous catalytic enantioselective synthesis ofα-amino acid derivatives. Tetrahedron Lett 39: 8775–8778

    Google Scholar 

  • Oppolzer W (1990) Camphor as a natural source of chirality in asymmetric synthesis. Pure Appl Chem 62:1241–1250

    Google Scholar 

  • Oppolzer W, Tamura O (1990) Asymmetric synthesis ofα-amino acids andα-N-hydroxyamino acids via electrophilic amination of born anesultam-derived enolates with 1-chloro-1-nitrosocyclohexane. Tetrahedron Lett 31: 991–994

    Google Scholar 

  • Oppolzer W, Pedrosa R, Moretti R (1986) Asymmetric syntheses ofα-amino acids fromα-halogenated 10-sulfonamido-isobornyl esters. Tetrahedron Lett 27: 831–834

    Google Scholar 

  • Oppolzer W, Moretti R, Thomi S (1989) Asymmetric alkylations of a sultam-derived glycinate equivalent: practical preparation of enantiomerically pureα-amino acids. Tetrahedron Lett 30: 6009–6010

    Google Scholar 

  • Osborn H, Sweeney J (1997) The asymmetric synthesis of aziridines. Tetrahedron Asymm 8: 1693–1715

    Google Scholar 

  • Park Y, Beak P (1997) Enantioselective synthesis ofα-,β- andγ-aryl amino acids and esters. J Org Chem 62: 1574–1575

    Google Scholar 

  • Patel M, Worsley M (1969) Asymmetric synthesis of optically activeα-amino acids by hydrocyanic acid addition to the optically active Schiff bases. Can J Chem 48: 1881–1884

    Google Scholar 

  • Pellon P, Le Goaster C, Toupet L (1996) Diastereoselective synthesis of diphosphines, effect of their configuration in asymmetric catalysis. Tetrahedron Lett 37: 4713–4716

    Google Scholar 

  • Phadtare S, Kamat S, Pause G (1985) Asymmetric synthesis ofα-amino acids. Ind J Chem 2413: 811–814

    Google Scholar 

  • Porzi G, Sandri S (1996) Enantioselective synthesis of (R)- and (S)-α-amino acids using (6S)- and (6R)-6-methyl-morpholine-2,5-dione derivatives. Tetrahedron Asymm 7: 189–196

    Google Scholar 

  • Pracejus G (1959) Optische Aktivierung von N-phthalyl-α-Aminosäure-Derivaten durch tert.-Basen-Katalyse. Liebigs Ann Chem 622: 10–22

    Google Scholar 

  • Pye P, Rossen K, Reamer R, Tsou N, Volante R, Reider P (1997) A new planar chiral bisphosphine ligand for asymmetric catalysis: highly enantioselective hydrogenations under mild conditions. J Am Chem Soc 119: 6207–6208

    Google Scholar 

  • Qian X, Russel K, Boteju L, Htuby V (1995) Stereoselective total synthesis of topographically constrained designer amino acids: 2′,6′-dimethyl-β-methyltyrosines. Tetrahedron 51: 1033–1054

    Google Scholar 

  • RajanBabu T, Ayers T, Casalnuovo A (1994) Electronic amplification of selectivity in Rh-catalyzed hydrogenations: D-glucose-derived ligands for the synthesis of D- or Lamino acids. J Am Chem Soc 116: 4101–4102

    Google Scholar 

  • Sabelle S, Lucet D, Le Gall Th, Miokowski Ch (1998) Enantioselective synthesis ofα-amino acids from nitroalkenes. Tetrahedron Lett 39: 2111–2114

    Google Scholar 

  • Schlosser M, Limat D (1995) Sparteine-mediatedα-lithiation of N-Boc-N-methyl benzyl amine: rapid racemization and subsequent deracemization. J Am Chem Soc 117: 12342–12343

    Google Scholar 

  • Schöllkopf U, Hartwig W, Groth U (1979) Enantioselective synthesis ofα-methyl-α-aminocarboxylic acids by alkylation of the lactim ether of cyclo-(L-Ala-L-Ala). Angew Chem Int Ed Engl 18: 863–864

    Google Scholar 

  • Schöllkopf U, Groth U, Deng C (1981) Enantioselective synthesis of (R)-amino acids using L-valine as chiral agent. Angew Chem Int Ed Engl 20: 798–799

    Google Scholar 

  • Schöllkopf U, Hupfeld B, Kuper S, Egert E, Dyrbusch M (1988) Enantioselective synthesis of (R)-N-Boc-l-amino-2-arylcyclopropene-l-carboxylic acid methyl ester. Angew Chem Int Ed Engl 27:433–434

    Google Scholar 

  • Seebach D, Naef R (1981) Enantioselective generation and diastereoselective reactions of chiral enolates derived fromα-heterosubstitued carboxylic acids. Helv Chim Acta 64:2704–2708

    Google Scholar 

  • Seebach D, Boes M, Naef R, Schweizer B (1983) Alkylation of amino acids without loss of the optical activity: preparation ofα-substituted proline derivatives. A case of selfreproduction of chirality. J Am Chem Soc 105: 5390–5398

    Google Scholar 

  • Seebach D, Aebi J, Naef R, Weber T (1985)α-Alkylation of amino acids without racemization. Preparation of either (S)- or (R)-α-methyldopa from (S)-alanine.. Helv Chim Acta 68: 144–154

    Google Scholar 

  • Seebach D, Sting A, Hoffmann M (1996) Self-regeneration of stereocenters (SRS) — Applications, limitations, and abandonment of a synthetic principle. Angew Chem Int Ed Engl 35: 2708–2748

    Google Scholar 

  • Södergren M, Alonso D, Bedekar A, Anderson P (1997) Preparation and evaluation of nitrene precursors (Phl - NSO2Ar) for the copper catalyzed aziridination of olefins. Tetrahedron Lett 38: 6897–6900

    Google Scholar 

  • Solas D, Hale R, Patel D (1996) An efficient synthesis of N-α-Fmoc-4-(phosphonodifluoromethyl)-L-phenylalanine. J Org Chem 61: 1537–1539

    Google Scholar 

  • Strecker A (1850) Über die künstlische Bildung der Milchsäure und einen neuen, den Glycocoll homologen Körper. Liebigs Ann Chem 75: 27–51

    Google Scholar 

  • Tabcheh M, El Achqar A, Pappalardo L, Roumestant M-L, Viallefont Ph (1991) Alkylation and protonation of chiral Schiff bases: diastereoselectivity as a function of the nature of reactants. Tetrahedron 47: 4611–4618

    Google Scholar 

  • Tabcheh M, Guibourdenche Ch, Pappalardo L, Roumestant M-L, Viallefont Ph (1998) Diastereoselective protonation of enolates of Schiff bases. Tetrahedron Asymm 9: 1493–1495

    Google Scholar 

  • Tamura M, Harada K (1980) Asymmetric synthesis of aspartic acid by hydrogenation of optically active 1,4-oxazine derivative. Bull Chem Soc Jpn 53: 561–562

    Google Scholar 

  • Tanaka K, Alm M, Watanabe Y, Fuji K (1996) Asymmetric synthesis of uncommon aamino acids by diastereoselective alkylations of a chiral glycine equivalent. Tetrahedron Asymm 7: 1771–1782

    Google Scholar 

  • Tanner D (1994) Chiral aziridines — their synthesis and use in stereoselective transformations. Angew Chem Int Ed Engl 33: 599–619

    Google Scholar 

  • Togni A, Breutel C, Schnyder A, Spindler F, Landert H, Tijani A (1994) A novel easily accessible ferrocenyldiphosphine for highly enantioselective hydrogenation, allylic alkylation, and hydroboration reactions. J Am Chem Soc 116: 4062–4066

    Google Scholar 

  • Trimble L, Vederas J (1986) Amination of chiral enolates by dialkyl azodiformates. Synthesis ofα-hydrazino acids andα-amino acids. J Am Chem Soc 108: 6397–6399

    Google Scholar 

  • Vidal J, Guy L, Stérin S, Collet A (1993) Electrophilic amination: preparation and use of N-Boc-3-(4-cyanophenyl)oxaziridine, a new reagent that transfers a N-Boc group to N- and C-nucleophiles. J Org Chem 58: 4791–4793

    Google Scholar 

  • Vigneron J-P, Kagan H, Horeau A (1968) Synthèse asymétrique de l'acide aspartique optiquement pur. Tetrahedron Lett 19: 5681–5683

    Google Scholar 

  • Voyer N, Roby J (1995) An expedient enantioselective synthesis of N-Boc-protected phenylsarcosine. Tetrahedron Lett 36: 6627–6630

    Google Scholar 

  • Voyer N, Roby J, Chénard S, Barberis C (1997) Enantioselective synthesis of phenylglycines using (−) sparteine.s-BuLi complex. Tetrahedron Lett 38: 6505–6508

    Google Scholar 

  • Walkup R, Cole D, Whittlesey B (1995) Silicon-containing amino acids and peptides. Asymmetric synthesis of (trialkylsilyl)alanines. J Org Chem 60: 2630–2634

    Google Scholar 

  • Ward R, Pelter A, Goubet D, Pritchard M (1995) Diastereoselective synthesis of abromoamides leading to diastereomerically enrichedα-amino-,α-hydroxy- and athiocarboxylic acid derivatives. Tetrahedron Asymm 6: 93–96

    Google Scholar 

  • Williams R (1989) Synthesis of optically activeα-amino acids. In: Balwin J, Magnus P (eds) Organic chemistry series, vol 7. Pergamon Press, Oxford

    Google Scholar 

  • Williams R, Im M-N (1988) Asymmetric synthesis ofα-amino acids: comparaison of enolate vs. cation functionalization of N-Boc-5,6-diphenyl-2,3,5,6-tetrahydro-4H-1,4oxazin-2-ones. Tetrahedron Lett 29: 6075–6078

    Google Scholar 

  • Williams R, Sinclair P, Zhai D, Chen D (1988) Practical asymmetric syntheses ofα-amino acids through carbon-carbon bond constructions on electrophilic glycine templates. J Am Chem Soc 110: 1547–1557

    Google Scholar 

  • Winter S, Pracejus H (1966) Überα-phthalamido-Ketene. Chem Ber 99: 151–159

    Google Scholar 

  • Xiang L, Wu H, Hruby V (1995) Stereoselective synthesis of all individual isomers of 3-methyl-2′,6′-dimethylphenylalanine. Tetrahedron Asymm 6: 83–86

    Google Scholar 

  • Yamada S-I, Hashimoto S-I (1976) Asymmetric transamination from amino acid (III) asymmetric synthesis of phenylglycine by chimical transamination from optically active amino acids to benzaldehyde. Chemistry Lett: 921–926

  • Yamada S-I, Oguri T, Shioiri T (1976) Asymmetric synthesis ofα-amino acid derivatives by alkylation of a chiral Schiff base. J Chem Soc Chem Comm: 136–137

  • Yamamoto Y, Ito W, Maruyama K (1985) Enantio- and diastereo-selective synthesis of amino acids via the reaction of allylic boron compounds withα-imino-esters. J Chem Soc Chem Comm: 1131–1132

  • Yamamoto Y, Ito W, Maruyama K (1988) Studies on the reaction ofα-imino esters with organometallic compounds. Tetrahedron 44: 5415–5423

    Google Scholar 

  • Yaozhong J, Changyou Z, Huri P (1989) Asymmetric synthesis VII: double stereodifferentiation in allylation of ketimines bearing two chiral auxiliaries. Application to enantioselective synthesis ofα-allylglycine. Synthetic Commun 19: 881–888

    Google Scholar 

  • Yaozhong J, Guilan L, Changyou Z, Huri P, Lanjun W, Aiqiao M (1991) Asymmetric synthesis XII I: the stereocontrolled synthesis of (R)-α-amino acids via a double chiral induction. Synthetic Commun 21: 1087–1090

    Google Scholar 

  • Yeh T-L, Liao C-C, Uang B-J (1997) Enantioselective synthesis ofα-amino acids from glycinet-butyl ester. Tetrahedron 53: 11141–11152

    Google Scholar 

  • Zheng, Amstrong J, McWilliams Ch, Volante R (1997) Asymmetric synthesis ofα-amino acid derivatives via an electrophilic amination of chiral amide cuprates with Li tbutyl-N-tosyloxycarbamate. Tetrahedron Lett 38: 2817–2820

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmes, M., Daunis, J. How to build optically activeα-amino acids. Amino Acids 16, 215–250 (1999). https://doi.org/10.1007/BF01388170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388170

Keywords

Navigation