Skip to main content
Log in

Edge pinning and internal phase transitions in a system of domain walls

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A model consisting of an array of flexible self-avoiding domain walls extending across a two-dimensional medium is considered. Adsorption phenomena in the presence of edgepinning forces and rupture, segregation, and order-disorder transitions due to shortrange attractive and repulsive interactions between the domain walls are studied using fermion transfer-matrix methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gennes, P.G. de: J. Chem. Phys.48, 2257 (1968)

    Article  Google Scholar 

  2. Pokrovski, V.L., Talapov, A.L.: Phys. Rev. Lett.42, 65 (1979); Sov. Phys. JETP51, 134 (1980)

    Google Scholar 

  3. Schulz, H.J.: Phys. Rev. B22, 5274 (1980)

    Google Scholar 

  4. Okwamoto, Y.: J. Phys. Soc. Jpn.49, 8 (1980)

    Google Scholar 

  5. Luther, A., Timonen, J., Pokrovsky, V.L.: Phase transitions in surface films. Dash, J.G., Ruvalds, J. (eds.). New York: Plenum Press 1980

    Google Scholar 

  6. Villain, J.: Ordering in strongly fluctuating condensed matter systems. Riste, T. (ed.). New York: Plenum Press 1980

    Google Scholar 

  7. Villain, J., Bak, P.: J. Phys. (Paris)42, 657 (1981)

    Google Scholar 

  8. Haldane, F.D.M., Villain, J.: J. Phys. (Paris)42, 1673 (1981)

    Google Scholar 

  9. Ostlund, S.: Phys. Rev. B24, 398 (1981)

    Google Scholar 

  10. Abraham, D.B.: Phys. Rev. Lett.44, 1165 (1980)

    Google Scholar 

  11. Burkhardt, T.W.: J. Phys. A14, L63 (1981)

    Google Scholar 

  12. Chalker, J.T.: J. Phys. A14, 2431 (1981)

    Google Scholar 

  13. Chui, S.T., Weeks, J.D.: Phys. Rev. B23, 2438 (1981)

    Google Scholar 

  14. Kroll, D.M.: Z. Phys. B — Condensed Matter41, 345 (1981)

    Google Scholar 

  15. van Leeuwen, J.M.J., Hilhorst, H.J.: Physica107 A, 319 (1981)

    Google Scholar 

  16. Kroll, D.M., Lipowsky, R.: Phys. Rev. B26, 5289 (1982)

    Google Scholar 

  17. de Oliviera, M.J., Griffiths, R.B.: Surf. Sci.71, 687 (1978)

    Google Scholar 

  18. Pandit, R., Schick, M., Wortis, M.: Phys. Rev. B26, 5112 (1982)

    Google Scholar 

  19. Schulz, H.J.: Phys. Rev. Lett.46, 1685 (1981)

    Google Scholar 

  20. Rys, F.S.: Phys. Rev. Lett.51, 849 (1983)

    Google Scholar 

  21. Blöte, H.W.J., Hilhorst, H.J.: J. Phys. A15, L631 (1982)

    Google Scholar 

  22. There is no unique way to approximate\(\hat T\) in terms of a quadratic fermion Hamiltonian. Other choices, such as\(\hat T = 1 + \Sigma c_{x'}^ + \left\langle {x'\left| t \right|x} \right\rangle c_x \), which gives the matrix elements exactly in the case of a single domain wall, lead to a sequence of transitions with thesame qualitative characteristics, i.e. discontinuities in the specific heat. This second choice for\(\hat T\) only permits no kinks or one kink in alln domain walls betweeny andy+1, whereas (2.6) allows an arbitrary number of kinks in each wall, weighted in a particular way. Thus (2.5)–(2.6) replace the original model by another in which the distance between the kinks of a domain wall is a continuous rather than a discrete variable

  23. Fetter, A.L., Walecka, J.D.: Quantum theory of many-particle systems. New York: McGraw-Hill 1971

    Google Scholar 

  24. The transfer matrix\(\hat T = \exp ( - \hat H)\) with\(\hat H\) given by (3.1) does not correspond exactly to the underlying lattice model, as can be seen by expanding\(\hat T\) in powers of\(\hat H\) and considering the nonvanishing matrix elements term by term. There is only agreement to first order in exp(−J/k BT) andV 1. One hopes that the differences in the models in higher orders do not change the qualitative characteristics of the phase transitions, i.e. that the universality classes are the same

  25. Luther, A., Peschel, I.: Phys. Rev. B12, 3908 (1975)

    Google Scholar 

  26. Luther, A.: Phys. Rev. B14, 2153 (1976)

    Google Scholar 

  27. des Cloizeaux, J., Gaudin, M.: J. Math. Phys.7, 1384 (1966)

    Google Scholar 

  28. Yang, C.N., Yang, C.P.: Phys. Rev.150, 321, 327 (1966); Phys. Rev.151, 258 (1966)

    Google Scholar 

  29. Haldane, F.D.M.: Phys. Rev. Lett.45, 1358 (1980)

    Google Scholar 

  30. Luttinger, J.M.: J. Math. Phys.4, 1154 (1963)

    Google Scholar 

  31. Mattis, D.C., Lieb, E.H.: J. Math. Phys.6, 304 (1965)

    Google Scholar 

  32. Luther, A.: Phys. Rev. B15, 403 (1977)

    Google Scholar 

  33. Schlottmann, P.: Phys. Rev. B15, 465 (1977)

    Google Scholar 

  34. Luther, A., Peschel, I.: Phys. Rev. B9, 2911 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Heisenberg Fellow of the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhardt, T.W., Schlottmann, P. Edge pinning and internal phase transitions in a system of domain walls. Z. Physik B - Condensed Matter 54, 151–158 (1984). https://doi.org/10.1007/BF01388066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388066

Keywords

Navigation