Skip to main content
Log in

Transient behavior of heat removal from a cylindrical heat storage vessel packed with spherical porous particles

Übertragungsverhalten beim Wärmeentzug aus einem zylindrischen Wärmespeicher mit Kugelschüttung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The transient heat transfer behavior in the case of heat removal from a cylindrical heat storage vessel packed with spherical particles was investigated experimentally for various factors (flow rate, diameter of spherical particles packed, temperature difference between flowing cold air and spherical particles accumulating heat, and physical properties of spherical particles). The experiments were covered in ranges of Reynolds number based on the mean diameter of spherical particles packed Red = 10.3–2200, porosityɛ=0.310 to 0.475, ratio of spherical particle diameter to cylinder diameterd/D = 0.0075–0.177 and ratio of length of the cylinder to cylinder diameterL/D=2.5–10. It was found that especially the flow rate and the dimension of spherical particles played an important role in estimating the transient local heat transfer characteristics near the wall of the cylindrical vessel in the present heat storage system. As flow rate and diameter of spherical particles were increased under a given diameter of the cylinder heat storage vessel, the mean heat transfer coefficient between the flow cold air and the hot spherical particles increased and the time period to finish removing heat from the vessel reduced. In addition, the useful experimental correlation equations of mean heat transfer coefficient between both phases and the time period to finish removing heat from the vessel were derived with the functional relationship of Nusselt numberNu d=f [modified Prandtl numberPr * (d/D), Red) and Fourier numberFo = f(d/D, L/D, Pr*, Red).

Zusammenfassung

Das Übertragungsverhalten beim Wärmeentzug aus einem zylindrischen Wärmespeicher mit Kugelschüttung wurde experimentell untersucht. Dabei wurden verschiedene Einflußgrößen berücksichtigt, wie beispielsweise der Volumenstrom, der Kugeldurchmessser der Schüttungsteilchen im Speicherbehälter, die Temperaturdifferenz zwischen der strömenden kalten Luft und der Schüttung sowie die physikalischen Eigenschaften des Speichermaterials.

Die Experimente wurden in folgenden Bereichen durchgeführt:

  • Reynoldszahl, bezogen auf den Kugeldurchmesser des Schüttguts im SpeicherRe d = 10.3–2200.

  • Porosität der Kugelschüttungɛ=0.310–0.475.

  • Verhältnis von Kugeldurchmesser der Schüttung und Zylinderdurchmesser des Speichersd/D=0.0075–0.177 und

  • Verhältnis von Zylinderlänge und Zylinderdurchmesser des SpeichersL/D=2.5–10.0.

Es wurde festgestellt, daß insbesondere der Volumenstrom und die Abmessungen der kugelförmigen Teilchen der Schüttung von großer Bedeutung bei der Bewertung des Übertragungsverhaltens beim Wärmeentzug, speziell im Bereich der Speicherwand, sind. Wenn der Volumenstrom und der Kugeldurchmesser des Schüttguts erhöht wird, bei einem vorgegebenen Durchmesser des Speicherbehälters, steigt der mittlere Wärmetransportkoeffizient zwischen zuströmender kalter Luft und der heißen Schüttung; der Zeitraum der Entladung verkürzt sich.

Die experimentell ermittelte Abhängigkeit des mittleren Wärmetransportkoeffizienten zwischen der strömenden Luft und der Kugelschüttung von der Entladungszeit des Wärmespeichers ermöglicht die Bestimmung der Abhängigkeit dieses Entladevorgangs von der NusseltzahlNu d f (modifizierte PrandtlzahlPr *, d/D, Red) und der FourierzahlFo =f(d/D, L/D, Pr*, Red).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

sectional area of cylindrical bed

α :

thermal diffusivity

α * :

modified thermal diffusivity,λ*/(ϱ cp)*

Cp :

specific heat at constant pressure

D :

diameter of cylindrical porous layer

d :

diameter of spherical particle

d * :

effective diameter of spherical particle, 6/S υ

Fo :

Fourier number,λc/d2

Fo * :

Modified Fourier number, Fo/[(d/D)−1.09(L/D)0.322Pr*1/3]

g :

gravitational acceleration

h :

heat transfer coefficient between flowing fluid and the particles

L :

length of cylindrical porous layer

Nu d :

Nusselt number,h m d/λ

Pr * :

Prandtl number, ν/α*

Δp :

pressure drop

Q :

heat

R :

distance in the radial direction

Re d :

Reynolds number,Ud/ν

Re *d :

modified Reynolds number,U* d/ν

S t :

total surface area if spherical solid particles packed in porous bed

S υ :

specific surface, surface of the particles per unit volume of porous bed,S t[AL(1−ɛ)]

T :

temperature

ΔT :

temperature difference between inlet fluid and initial porous bed, Tout−Tin

U :

superficial fluid velocity based on empty cylinder

U * :

actual velocity of fluid in the bed,U/ɛ

X :

distance in the axial direction

ɛ :

porosity

γ :

specific weight

λ :

thermal conductivity

λ * :

effective thermal conductivity of porous medium

μ :

viscosity

ν :

kinematic viscosity

ϱ :

density

τ :

time

τ c :

time period to finish the heat release porous layer

f, s :

fluid (air) and solid (spherical particle) phases, respectively

in:

inlet to porous layer

m :

mean value

out:

outlet from porous layer

References

  1. Baker, J. J.: Heat transfer in packed beds. Ind. Eng. Chem. 57 (1965) 43–51

    Google Scholar 

  2. Littman, H.; Barile, R. G.; Pulsifer, A. H.: Gas-particle heat transfer coefficients in packed beds at low Reynolds numbers. Ind. Eng. Chem. Fundam. 7 (1968) 554–561

    Google Scholar 

  3. Cybulsk, A.; Vam Dalen, M. T.; Verkerk, J. W.; Van den Berg, P. J.: Gas-particle heat transfer coefficient in packed beds at low Reynolds number. Chem. Eng. Sci. 30 (1975) 1015–1018

    Google Scholar 

  4. Kunii, D.; Suzuki, M.: Particle to fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass. Trans. 10 (1967) 854–862

    Google Scholar 

  5. Yagi, S.; Kunii, D.; Wakao, N.: Studies on axial effective thermal conductivity in packed beds. A.I.Ch.E. J. 6 (1960) 543–546

    Google Scholar 

  6. Kunii, D.; Smith, J. M.: Heat transfer characteristics of porous rock: Thermal conductivities of unconsolidated particles with flowing fluids. A.I.Ch.E. 7 (1961) 29–34

    Google Scholar 

  7. Ergun, S.: Fluid flow through packed columns. Che. Eng. Prog. 48 (1952) 89–94

    Google Scholar 

  8. Kimura et al: Distribution of void in packed tube: Kagaku Kogaku (in Japan) 19 (1955) 397–402

    Google Scholar 

  9. Kunii, D.; Smith, J. M.: Heat transfer characteristics of porous rocks. A.I.Ch.E. J. 6 (1960) 71–78

    Google Scholar 

  10. Verschoor, H.; Schuit, G. G. A.: Heat transfer in a packed bed. Appl. Sci. Res. A-2 (1951) 97–103

    Google Scholar 

  11. Furas, C. C.: Heat transfer from a gas stream to a bed of broken solid. Ind. Eng. Chem. 22 (1930) 26–31

    Google Scholar 

  12. Löf, G. O. G.; Hawley, R. W.: Unsteady-state heat tran7sfer between air and loose solid. Ind. Eng. Chem. 40 (1948) 1061–1066

    Google Scholar 

  13. Satterfield, C. N.; Resinick, H.: Simultaneous heat and mass transfer in a diffusion-controlled chemical reaction-part II, studies in a packed bed. Chem. Eng. Prog. 50 (1954) 504–509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, H., Fukuda, T., Saito, H. et al. Transient behavior of heat removal from a cylindrical heat storage vessel packed with spherical porous particles. Wärme- und Stoffübertragung 22, 325–333 (1988). https://doi.org/10.1007/BF01387888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01387888

Keywords

Navigation