Advertisement

Numerische Mathematik

, Volume 57, Issue 1, pp 97–104 | Cite as

Product integration of singular integrands based on cubic spline interpolation at equally spaced nodes

  • Catterina Dagnino
Article

Summary

In this paper the convergence of product integration rules, based on cubic spline interpolation at equally spaced nodes, with “not-a-knot” end condition, is investigated for integrand functions with a interior or endpoint singularity in the integration interval.

Subject Classifications

AMS (MOS): 65D30 CR: G 1.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alaylioglu A., Lubinsky D.S., Eyre, D.: Product integration of logarithmic singular integrands based on cubic splines. J. Comput. App. Math.11, 353–366 (1984)Google Scholar
  2. 2.
    Atkinson K.E.: A survey of numerical methods for the solution of Fredholm integral equations of the second kind. Siam, Philadelphia 1976Google Scholar
  3. 3.
    Dagnino C., Palamara Orsi A.: Product integration of piecewise continuous integrands based on cubic spline interpolation at equally spaced nodes. Numer. Math.52, 459–466 (1988)Google Scholar
  4. 4.
    Davis P.J., Rabinowitz, P.: Methods of numerical integration. 2nd Ed. New York: Academic Press 1984Google Scholar
  5. 5.
    de Boor C.: A practical guide to splines. New York Heidelberg Berlin: Springer 1972Google Scholar
  6. 6.
    Domsta J.: Approximation by spline interpolating basis. Studia Mathematica58, 223–237 (1976)Google Scholar
  7. 7.
    Greville T.N.E.: Theory and applications of spline functions. New York: Academic Press 1969)Google Scholar
  8. 8.
    Lubinsky D.S., Sidi A.: Convergence of product rules for functions with interior and endpoint singularities over bounded and unbounded intervals. Math. Comput.46, 229–245 (1986)Google Scholar
  9. 9.
    Rabinowitz P., Sloan I.H.: Product integration in the presence of a singularity. SIAM J. Numer. Anal.21, 149–166 (1984)Google Scholar
  10. 10.
    Rabinowitz, P.: Ignoring the singularity in numerical integration. Topics in Numerical Analysis, III, J.J.H. Miller (ed.) Academic Press, London, 361–368 (1977)Google Scholar
  11. 11.
    Rabinowitz P.: Numerical integration in the presence of an interior singularity. J. Comput. Appl. Math.17, 31–41 (1987)Google Scholar
  12. 12.
    Sloan I.H., Smith W.E.: Properties of interpolating product integration rules. SIAM J. Numer. Anal.19, 427–442 (1982)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Catterina Dagnino
    • 1
  1. 1.Dipartimento di Energetica, Facoltà di IngegneriaUniversità de L'AquilaMonteluco (AQ)Italy

Personalised recommendations