Numerische Mathematik

, Volume 57, Issue 1, pp 51–62 | Cite as

Small potential corrections for the discrete eigenvalues of the Sturm-Liouville problem

  • Jürg T. Marti


The inverse Sturm-Liouville problem is the problem of finding a good approximation of a potential functionq such that the eigenvalue problem (*)−y+qyy holds on (0, π) fory(0)=y(π)=0 and a set of given eigenvalues λ. Since this problem has to be solved numerically by discretization and since the higher discrete eigenvalues strongly deviate from the corresponding Sturm-Liouville eigenvalues λ, asymptotic corrections for the λ's serve to get better estimates forq. Let λ k (1≦kn) be the first eigenvalues of (*), letΛ k be the corresponding discrete eigenvalues obtained by the finite element method for (*) and letμ k Λ k for the special caseq=0. Then, starting from an asymptotic correction technique proposed by Paine, de Hoog and Anderssen, new estimates for the errors\(\bar \Lambda _k - \Lambda _k \) of the corrected discrete eigenvalues\(\bar \Lambda _k : = \lambda _k + \mu _k - k^2 \) are obtained and confirm and improve the knownO(kh2)(h:=π/(n+1)) behaviour. The estimates are based on new Sobolev inequalities and on Fourier analysis and it is shown that\(|\bar \Lambda _k - \Lambda _k | \leqq c_1 kh^2 \) for 4+c2≦k≦(n+1)/2, wherec1 andc2 are constants depending onq which tend to 0 for vanishingq.

Subject Classifications

AMS(MOS): 65L15 CR: G1.7 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrew, L., Paine, J.W.: Correction of Numerov's eigenvalue estimates. Numer. Math.47, 289–300 (1985).Google Scholar
  2. 2.
    Andrew, L., Paine, J.W.: Correction of finite element estimates for Sturm-Liouville eigenvalues. Numer. Math.50, 205–215 (1986)Google Scholar
  3. 3.
    Henrici, P.: Essentials of numerical analysis with pocket calculator demonstrations. New York: Wiley 1982Google Scholar
  4. 4.
    Marti, J.T.: Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems. New York: Academic Press 1986Google Scholar
  5. 5.
    Marti, J.T.: New upper and lower bounds for the eigenvalues of the Sturm-Liouville problem. Computing42, 239–243 (1989)Google Scholar
  6. 6.
    Paine, J.W., de Hoog, F.R., Anderssen, R.S.: On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems. Computing26, 123–139 (1981)Google Scholar
  7. 7.
    Poeschel, J., Trubowitz, E.: Inverse spectral theory. New York: Academic Press 1987Google Scholar
  8. 8.
    Strang, G., Fix, G.J.: An analysis of the finite element method. Englewood Cliffs: Prentice Hall 1973Google Scholar
  9. 9.
    Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Jürg T. Marti
    • 1
  1. 1.Seminar für Angewandte MathematikETH ZürichZürichSwitzerland

Personalised recommendations