Skip to main content
Log in

On computing the pressure by thep version of the finite element method for Stokes problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This paper introduces and analyzes two ways of extracting the hydrostatic pressure when solving Stokes problem using thep version of the finite element method. When one uses a localH 1 projection, we show that optimal rates of convergence for the pressure approximation is achieved. When the pressure is not inH 1. or the value of the pressure is only needed at a few points, one may extract the pressure pointwise using e.g. a single layer potential recovery. Negative, zero, and higher norm estimates for the Stokes velocity are derived within the framework of thep version of the F.E.M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A. (1975): Sobolev Spaces. Academic Press, New York

    Google Scholar 

  2. Arnold, D., Scott, L.R., Vogelius, M. (1988): Regular inversion of the divergence operator with Dirichlet conditions on a polygon. Ann. Sc. Norm. Super Pisa, Cl. Sci., IV Ser.,15(2):169–192

    Google Scholar 

  3. Arnold, D.N., Babuška, I., Osborn, J. (1984): Finite element methods: Principles for their selection. Comput. Methods Appl. Mech. Engrg.45:57–96

    Google Scholar 

  4. Babuška, I. (1971): Error bounds for the finite element method. Numer. Math.16:322–333

    Google Scholar 

  5. Babuška, I., Suri, M. (1987): On the optimal convergence rate of thep-version of the finite element method. SIAM J. Numer. Anal.,24(4):750–776

    Google Scholar 

  6. Babuška, I., Szabó, B., Katz, I.N. (1981): Thep version of the finite element method. SIAM J. Numer. Anal., 18:515–545

    Google Scholar 

  7. Bernardi, C., Maday, Y., Métivet, B. (1987): Computation of the pressure in the spectral approximation of the Stokes problem. La Recherche Aérospatiale,1(1):1–21

    Google Scholar 

  8. Bernardi, C., Raugel, G. (1981): Méthodes d'éléments finis mixtes pour les équations de Stokes et de Navier-Stokes dans un polygone nonconvexe. Calcolo,18:255–291

    Google Scholar 

  9. Bramble, J.H., Schatz, A.H. (1977): Higher order local accuracy by averaging in the finite element method. Math. Comput.31(137):94–111

    Google Scholar 

  10. Brezzi, F. (1974): On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers. RAIRO8:129–151

    Google Scholar 

  11. Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North-Holland. Amsterdam

    Google Scholar 

  12. Costabel, M. (1988): Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal.19:613–626

    Google Scholar 

  13. Dauge, M. (1988): Elliptic Boundary Value Problems on Corners Domains. Vol. 1341. Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Dauge, M. (1989): Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners, Part. I. Linearized equations. SIAM J. Math. Anal.20(1):74–97

    Google Scholar 

  15. Dorr, M. (1984): The approximation theory for thep-version of the finite element method. SIAM J. Numer. Anal.21(6):1180–1207

    Google Scholar 

  16. Girault, V., Raviart, P.-A. (1979): Finite Element Approximation of the Navier-Stokes Equations, Vol. 749. Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Gottlieb, D., Orszag, S. (1977): Numerical Analysis of Spectral Methods: Theory and Applications, Vol. 26. CBMS-NSF Regional Conf. Series. Applied Math. SIAM, Philadelphia

    Google Scholar 

  18. Grisvard, P. (1985): Elliptic Problems in Nonsmooth Domains. Pitman, Boston

    Google Scholar 

  19. Hughes, T.J.R., Franca, L.P., Balestra, M. (1986): A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolation. Comput. Methods Appl. Mech. Eng.59:85–99

    Google Scholar 

  20. Douglas, J., Wang, J. (1989): An absolutely stability finite element method for the Stokes problem. Math. Comput.52(186):495–508

    Google Scholar 

  21. Jensen, S. (1991): AnH mo interpolation result. SIAM J. Math. Anal.22:785–791

    Google Scholar 

  22. Jensen, S., Vogelius, M. (1990): Divergence stability in connection with thep version of the finite element method. RAIRO, Modelisation Math. Anal. Numer.24(6):737–764

    Google Scholar 

  23. Johnson, C., Pitkäranta, J. (1982): Analysis of some mixed finite element methods related to reduced integration. Math. Comput.38(158):357–400

    Google Scholar 

  24. Kellogg, R.B., Osborn, J.E. (1976): A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal.21(4):397–431

    Google Scholar 

  25. Lozi, R. (1978): Résultats numérique de régularité du problème de Stokes et du Laplacian itéré dans un polygone. RAIRO, Anal. Numér.12(3):267–282

    Google Scholar 

  26. Osborn, J. (1975): Regularity of solutions of the Stokes problem in a polygonal domain. In: B. Hubbard (ed.), Symposium on Numerical Solutions of Partial Differential Equations III. Academic Press, New York, pp. 393–411

    Google Scholar 

  27. Papadakis, P. (1988): Computational aspects of the determination of the stress intensity factors for two-dimensional elasticity. PhD thesis, Univ. of Maryland

  28. Rønquist, E.M. (1988): Optimal spectrum element method for unsteady three-dimensional incompressible Navier-Stokes equations. PhD thesis, MIT

  29. Scott, L.R., Vogelius, M. (1985): Conforming finite element methods for incompressible and nearly incompressible continua. In: Lectures in Applied Mathematics, Vol. 22, pp. 221 244, AMS

  30. Scott, L.R., Vogelius, M. (1985): Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO, Modelisation Math. Anal. Numer.19(1):111–143

    Google Scholar 

  31. Seif, J.B. (1973): On the Green's function for the biharmonic equation in an infinite wedge. Trans. Amer. Math. Soc.182:241–260

    Google Scholar 

  32. Suri, M. (1990): On the stability and convergence of higher order mixed finite element methods for second order elliptic problems. Math. Comput.54(189):1–19

    Google Scholar 

  33. Suri, M. (1990): Thep-version of the finite element method for elliptic problems of order 2l. RAIRO, Modelisation Math. Anal. Numer.24:265–304

    Google Scholar 

  34. Szabó, B., Babuška, I., Chayapathy, B.K. (1989): Stress computations for nearly incompressible materials by thep-version of the finite element method. Int. J. Numer. Methods Eng.28(9):2175–2190

    Google Scholar 

  35. Szabó, B.A. (1985): PROBE: Theoretical Manual. Noetic Technologies Corp., St. Louis, Missouri

    Google Scholar 

  36. Temam, R. (1977): Navier-Stokes equations. North-Holland, Amsterdam

    Google Scholar 

  37. Vogelius, M. (1983): A right-inverse for the divergence operator in spaces of piecewise polynomials Application to thep version of the finite element method. Numer. Math.41:19–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by ONR grants N00014-87-K-0427 and N00014-90-J-1238

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, S. On computing the pressure by thep version of the finite element method for Stokes problem. Numer. Math. 59, 581–601 (1991). https://doi.org/10.1007/BF01385797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385797

Mathematics Subject Classification (1991)

Navigation