Skip to main content
Log in

On acceleration methods for coupled nonlinear elliptic systems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We compare both numerically and theoretically three techniques for accelerating the convergence of a nonlinear fixed point iterationu→T(u), arising from a coupled elliptic system: Chebyshev acceleration, a second order stationary method, and a nonlinear version of the Generalized Minimal Residual Algorithm (GMRES) which we call NLGMR. All three approaches are implemented in ‘Jacobian-free’ mode, i.e., only a subroutine which returnsT(u) as a function ofu is required.

We present a set of numerical comparisons for the drift-diffusion semiconductor model. For the mappingT which corresponds to the nonlinear block Gauß-Seidel algorithm for the solution of this nonlinear elliptic system, NLGMR is found to be superior to the second order stationary method and the Chebychev acceleration. We analyze the local convergence of the nonlinear iterations in terms of the spectrum σ[T u (u (*))] of the derivativeT u at the solutionu (*). The convergence of the original iteration is governed by the spectral radius ϱ[T U (u (*))]. In contrast, the convergence of the two second order accelerations are related to the convex hull of σ[T u (u (*))], while the convergence of the GMRES-based approach is related to the local clustering in σ[I−T u (u (*))]. The spectrum σ[I−T u (u (*))] clusters only at 1 due to the successive inversions of elliptic partial differential equations inT. We explain the observed superiority of GMRES over the second order acceleration by its ability to take advantage of this clustering feature, which is shared by similar coupled nonlinear elliptic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van der Sluis, A., van der Vorst, H.A. (1984): The rate of convergence of conjugate gradients. Tech. Rep. 354, Utrecht University, Mathematics Dept., Utrecht, The Netherlands

    Google Scholar 

  2. Agmon, S. (1965): Elliptic Boundary Value Problems. Van Nostrand, Toronto New York London

    Google Scholar 

  3. Arnoldi, W. (1951): The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math.9, 17–29

    Google Scholar 

  4. Bank, R., Coughran, W., Driscoll, M., Fichtner, W., Smith, R. (1988): Iterative methods in semiconductor simulation. Tech. Rep. Numerical Analysis Manuscript 88-10, AT&T Bell Laboratories

  5. Bank, R.E., Rose, D.J. (1981): Global Approximate Newton Methods. Numer. Math.37, 279–295

    Google Scholar 

  6. Bank, R.E., Rose, D.J., Fichtner, W. (1983): Numerical Methods for Semiconductor Device Simulation. SIAM J. Scient. Statist. Comput.4, 416–435

    Google Scholar 

  7. Brown, P., Saad, Y.: Hybrid GMRES methods for nonlinear systems of equations. In preparation

  8. Brown, P.N. (1987): A local convergence theory for combined inexact-Newton/finite difference projection methods. SIAM J. Numer. Anal.24, 407–434

    Google Scholar 

  9. Brown, P.N., Hindmarsh, A.C. (1986): Matrix-free methods for stiff systems of odes. SIAM J. Numer. Anal.23, 610–638

    Google Scholar 

  10. Brown, P.N., Hindmarsh, A.C. (1986): Reduced-storage matrix methods in stiff ode systems. Tech. Rep. UCLR-95088, Comp. and Math. Res. Div., L-316, Lawrence Livermore Lab., Livermore, Ca., USA

    Google Scholar 

  11. Chan, T., Jackson, K. (1984): Nonlinearly Preconditioned Krylov Subspace Methods for Discrete Newton Algorithms. SIAM J. Stat. Sci. Comput.7, 533–542

    Google Scholar 

  12. Chatelin, F. (1983): Spectral Approximation of Linear Operators. Academic Press, New York San Francisco London

    Google Scholar 

  13. Cullum, J., Willoughby, R. (1984): A lanczos procedure for the modal analysis of very large nonsymmetric matrices. In: Proceedings of the 23rd Conference on Decision and Control, Las Vegas

  14. Dembo, R., Eisenstat, S., Steihaug, T. (1982): Inexact Newton Methods. SIAM J. Numer. Anal.18, 400–408

    Google Scholar 

  15. Dennis, Jr., J., Schnabel, R.B. (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  16. Eriksson, L.E., Rizzi, A. (1983): Analysis by computer of the convergence of discrete approximations to the Euler equations. In: Proceedings of the 1983 AIAA conference, Denver, AIAA paper number=83-1951, pp. 407–442

  17. Fischer, B., Freund, R. (1991): Chebychev Polynomials are Not Always Optimal. J. Approx. Theory65, 261–272

    Google Scholar 

  18. Gear, C., Saad, Y. (1983): Iterative solution of linear equations in ode codes. SIAM J. Sci. Stat. Comput.4, 583–601

    Google Scholar 

  19. Gummel, H. (1964): A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor calculations. IEEE Trans. Elec. Dev.ED-11, 455–465

    Google Scholar 

  20. Gutknecht, M., Niethammer, W., Varga, R. (1986): K-Step Iterative Methods for Solving Nonlinear Systems of Equations. Numer. Math.48, 699–712

    Google Scholar 

  21. Hageman, L.A., Young, D.M. (1981): Applied Iterative Methods. Academic Press, New York San Francisco London

    Google Scholar 

  22. Hyman, J., Manteuffel, T. (1983): Dynamic acceleration of nonlinear processes. Preprint

  23. Jennings, A., Aziz, M.A. (1977): Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method. J. Inst. Math. Appl.20, 61–72

    Google Scholar 

  24. Jennings, A., Stewart, W. (1981): A simultaneous iteration algorithm for real matrices. ACM, Trans. Math. Software,7, 184–198

    Google Scholar 

  25. Jerome, J.W. (1985): Consistency of Semiconductor Modelling: An Existence/Stability Analysis for the Stationary van Roosbroeck System. SIAM J. Appl. Math.45, 565–590

    Google Scholar 

  26. Jerome, J.W. (1985): The Role of Semiconductor Device Diameter and Energy-Band Bending in Convergence of Picard Iteration for Gummel's Map. IEEE Trans. Elec. Dev.ED-32, 2045–2051

    Google Scholar 

  27. Jerome, J.W., Kerkhoven, T. (1991): The Steady State Drift-Diffusion Semiconductor Model. SIAM, Philadelphia

    Google Scholar 

  28. Jesperson, D., Buning, P. (1985): Accelerating an iterative process by explicit annihilation. SIAM J. Sci. Stat. Comput.6, 639–651

    Google Scholar 

  29. Kerkhoven, T. (1985): Convergence of Gummel's Algorithm for Realistic Device Geometries. In: J.J.H. Miller, ed., Proc. NASECODE IV Conference. Boole Press, Dublin, Ireland

    Google Scholar 

  30. Kerkhoven, T. (1986): A Proof of Convergence of Gummel's Algorithm for Realistic Boundary Conditions, SIAM J. Numer. Anal.23, 1121–1137

    Google Scholar 

  31. Kerkhoven, T. (1988): A Spectral Analysis of the Decoupling Algorithm for Semiconductor Simulation. SIAM J. Numer. Anal.25, 1299–1312

    Google Scholar 

  32. Kerkhoven, T. (1988): On the Effectiveness of Gummel's Method. SIAM J. Scient. Statist. Comput.9, 48–60

    Google Scholar 

  33. Kerkhoven, T., Galick, A.T., Ravaioli, U., Arends, J.H., Saad, Y. (1990): Efficient Numerical Simulation Of Two Dimensional Quantum Wells. J. Appl. Phys., 3461–3469

  34. Kitchen, Jr., J. (1966): Concerning the Convergence of Iterates to Fixed Points. Studia mathematicaXXVII, 247–249

    Google Scholar 

  35. Laux, S.E., Stern, F. (1986): Electron states in narrow gate-induced channels in Si. Appl. Phys. Lett.49, 91–93

    Google Scholar 

  36. Laux, S.E., Warren, A.C. (1986): Self-consistent calculation of electron states in narrow channels. Tech. Rep., IBM, T.J. Watson Research Center

  37. Manteuffel, T. (1985): An iterative method for solving nonsymmetric linear systems with dynamic estimation of parameters. Tech. Rep. UIUCDCS-75-758, University of Illinois at Urbana-Champaign, Urbana Ill., Ph.D. dissertation

    Google Scholar 

  38. Mock, M. (1972): On Equations Describing Steady-State Carrier Distributions in a Semiconductor Device. Comm. Pure Appl. Math.25, 781–792

    Google Scholar 

  39. Ortega, J., Rheinboldt, W. (1970): Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York San Francisco London

    Google Scholar 

  40. Saad, Y. (1980): Variations on arnodi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl.34, 269–295

    Google Scholar 

  41. Saad, Y. (1982): Projection methods for solving large sparse eigenvalue problems. In: Pitea Havsbad, B. Kagstrom, A. Ruhe, eds., Matrix Pencils. Proceedings. University of Umea, Sweden, Lecture Notes in Math. Series, No. 973. Springer, Berlin Heidelberg New York, pp. 121–144

    Google Scholar 

  42. Saad, Y., Schultz, M.H. (1986): GMRES: A Generalized Minimal Residual Method for solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput7, 856–869

    Google Scholar 

  43. Scharfetter, D., Gummel, H. (1969): Large signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev.ED-20, 64–77

    Google Scholar 

  44. Seidman, T.I. (1980): Steady State Solutions of Diffusion-Reaction Systems with Electrostatic Convection, Nonlinear Analysis. Theory, Meth. Appl.4, 623–637

    Google Scholar 

  45. Stewart, G. (1976): Simultaneous iteration for computing invariant subspaces of non-hermitian matrices. Numer. Math.25, 123–136

    Google Scholar 

  46. Strang, G., Fix, G.J. (1973): An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  47. Taylor, A.E. (1958): Introduction to Functional Analysis. Wiley, London New York

    Google Scholar 

  48. Wigton, L., Yu, D., Young, N. (1985): GMRES Acceleration of computational Fluid Dynamics Codes. In: Proceedings of the 1985 AIAA Conference, Denver

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerkhoven, T., Saad, Y. On acceleration methods for coupled nonlinear elliptic systems. Numer. Math. 60, 525–548 (1991). https://doi.org/10.1007/BF01385735

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385735

Mathematics Subject Classification (1991)

Navigation