Skip to main content
Log in

Analysis of an algorithm for the Galerkin-characteristic method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

It is shown that the interpretation of the Galerkin-Characteristic method for the scalar advection equation in the framework of particle methods yields a computationally efficient algorithm. Such an algorithm consists of updating the dependent variable at the grid points by cubic spline interpolation at the feet of the characteristic curves. The algorithm is unconditionally stable. The error analysis in the maximum norm shows that for sufficiently smooth functions the feet of the characteristic curves are points of high order convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardos, C., Bercovier, M., Pironneau, O. (1981): The vortex method with finite elements. Math. Comput.36, 119–136

    Google Scholar 

  2. Behforooz, G.H., Papamichael, N. (1979): End Conditions for Cubic Spline Interpolation. J. Inst. Maths. Applics.23, 355–366

    Google Scholar 

  3. Benque, J.P., Ibler, B., Keramsi, A., Labadie, G. (1980): A Finite Element Method for Navier-Stokes Equations. Proceedings of the third international conference on finite elements in flow problems. Banff, Alberta, Canada

  4. de Boor, C. (1978): A Practical Guide to Splines. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Boris, J.P., Book, D.L. (1973): Flux corrected transport. SHASTA. J. Comput. Phys.11, 36–39

    Google Scholar 

  6. Ciarlet, P. (1978): The finite element method for elliptic problems. North-Holland, Amsterdam

    Google Scholar 

  7. Douglas, J., Russell, T.F. (1982): Numerical methods for convection dominated diffusion problems based on combining the method of the characteristics with finite elements or finite differences. SIAM J. Numer. Anal.19, 871–885

    Google Scholar 

  8. Girault, V., Raviart, P.-A. (1986): Finite Element Methods for Navier-Stokes Equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Hale, J.K. (1980): Ordinary Differential Equations, 2nd ed. Krieger, Malabar, Florida

    Google Scholar 

  10. Hasbani, Y., Livne, E., Bercovier, M. (1983): Finite elements and characteristics applied to advection-diffusion equations. Comput. Fluids11, 71–83

    Google Scholar 

  11. Hughes, T.J.R., Tezduyar, T.E., Brooks, A. (1982): Streamline upwind formulation for advection-diffusion, Navier-Stokes and first order hyperbolic equations. Fourth Internat. Conf. on Finite Element Methods in Fluids, Tokyo

  12. Johnson, C., Navaert, U., Pitkaranta, J. (1984): Finite element methods for linear hyperbolic problems. Comput. Meth. Appl. Mech. Engrg.45, 285–312

    Google Scholar 

  13. Mas-Gallic, S., Raviart, P-A. (1987): A particle method for first order symmetric systems. Numer. Math.51, 323–352

    Google Scholar 

  14. Maz'ja, V.G. (1979): Sobolev Spaces. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Morton, K.W., Priestley, A., Suli, E. (1988): Stability of the Lagrange-Galerkin method with non-exact intergration. RAIRO4, 225–250

    Google Scholar 

  16. Munz, C-D. (1988): On the numerical dissipation of high resolution schemes for the hyperbolic conservation laws. J. Comput. Phys.77, 18–39

    Google Scholar 

  17. Pironneau, O. (1982): On the transport diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math.38, 309–332

    Google Scholar 

  18. Raviart, P-A. (1985): An analysis of particle methods. In: F. Brezzi, ed., Numerical Methods in Fluid Dynamics. Lecture Notes in Mathematics, Vol. 1127. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Suli, E. (1988): Convergence and Nonlinear Stability of the Lagrange-Galerkin Method for the Navier-Stokes Equations. Numer. Math.53, 459–483

    Google Scholar 

  20. Temperton, C., Staniforth, A. (1987): An efficient two-time level semi-Lagrangian semi-implicit integration scheme. Q.J.R. Meteorl. Soc.113, 1025–1039

    Google Scholar 

  21. Widlund, O. (1977): On best error bounds for approximation by piecewise polynomial functions. Numer. Math.27, 327–338

    Google Scholar 

  22. Zalesak, S.T. (1979): Fully multidimensional flux-corrected transport. J. Comput. Phys.31, 335–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermejo, R. Analysis of an algorithm for the Galerkin-characteristic method. Numer. Math. 60, 163–194 (1991). https://doi.org/10.1007/BF01385720

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385720

Mathematics Subject Classification (1991)

Navigation