Advertisement

Numerische Mathematik

, Volume 66, Issue 1, pp 281–294 | Cite as

Almost sure convergence of smoothingD m -splines for noisy data

  • Rémi Arcangeli
  • Bernard Ycart
Article

Summary

The purpose of this paper is to study the convergence of smoothingD m -splines relative to sets of data perturbed by a random noise. Conditions of almost sure convergence and error estimates are given.

Mathematics Subject Classification (1991)

41A15 60F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A. (1975): Sobolev Spaces, Academic Press, New YorkGoogle Scholar
  2. 2.
    Ciarlet, P.G., Raviart, P.A. (1972): General Lagrange and Hermite Interpolation in ℝn with applications to Finite Elements Methods. Arch. Rat. Mech. Anal.46, 177–199Google Scholar
  3. 3.
    Cox, D. (1984): Multivariate Smoothing Spline Functions. SIAM J. Numer. Anal.21(4), 789–813Google Scholar
  4. 4.
    De La Peña, V.H., Klass, M.J. (1993): Order of magnitude bounds for expectations involving quadratic forms. Ann. Proba. (to appear)Google Scholar
  5. 5.
    Duchon, J. (1976a): Fonctions-spline à énergie invariante par rotation. Rapport de recherche no 27, Mathématiques Appliquées UJF Grenoble, FranceGoogle Scholar
  6. 6.
    Duchon, J. (1976b): Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Anal. Num.10(12) 5–12Google Scholar
  7. 7.
    Duchon, J. (1977): Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Lect. Notes Math.571, 85–100Google Scholar
  8. 8.
    Hoffmann-Jorgensen, J. (1974): Sums of independent Banach space valued random variables. Stud. Math.52, 159–186Google Scholar
  9. 9.
    Kwapien, S., Woyczynski, W.A. (1992): Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, BostonGoogle Scholar
  10. 10.
    Loeve, M. (1963): Probability Theory, 3rd Ed., Van Nostrand, TorontoGoogle Scholar
  11. 11.
    Lopez de Silanes, M. C., Arcangeli, R. (1989): Estimations de l'erreur d'approximation par splines d'interpolation et d'ajustement d'ordre (m, s). Numer. Math.56, 449–467Google Scholar
  12. 12.
    Lopez de Silanes, M.C., Arcangeli, R. (1991): Sur la convergence desD m-splines d'ajustement pour des données exactes ou bruitées. Revista Matemática de la Universidad, Complutense de Madrid, Madrid4(2 et 3) pp. 279–294Google Scholar
  13. 13.
    Nečas, J. (1967): Les méthodes directes en théorie des équations elliptiques. Masson, ParisGoogle Scholar
  14. 14.
    Ragozin, D. (1983): Error Bounds for Derivatives Estimates Based on Spline Smoothing of Exact or Noisy Data. J. Approximation Theory,37, 335–355Google Scholar
  15. 15.
    Tikhonov, A., Arsenine, V. (1976): Méthodes de résolution de problèmes mal posés Mir, MoscouGoogle Scholar
  16. 16.
    Utreras, F. (1988): Convergence rates for multivariate smoothing spline functions. J. Approximation Theory52, 1–27Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Rémi Arcangeli
    • 1
  • Bernard Ycart
    • 2
  1. 1.Laboratoire de Mathématiques Appliquées, URA CNRS 1204Université de Pau, I.P.R.A.PauFrance
  2. 2.LMC/IMAGGrenoble CedexFrance

Personalised recommendations