Advertisement

Numerische Mathematik

, Volume 58, Issue 1, pp 255–272 | Cite as

A numerical algorithm for the Stokes problem based on an integral equation for the pressure via conformal mappings

  • W. Kratz
  • A. Peyerimhoff
Article

Summary

In this paper we present an algorithm for solving numerically the Stokes problem in the plane. The known algorithms are all based on certain discretization schemes for the analytic equations. In contrast to this recent work our algorithm uses an explicit analytic solution of a certain ‘approximating problem’, which can easily be solved numerically up to machine accuracy. On the one hand this analytic formula is based on a complex representation of all solutions of the Stokes differential equations, and on the other hand it is based on the conformal mapping of the given domain on the unit disc. Therefore, a central prerequisite of our corresponding program is a program for computing this conformal mapping.

Subject classifications

AMS(MOS): 76D05 65N99 30C30 CR:G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo21, 337–344 (1984)Google Scholar
  2. 2.
    Bank, R.E., Welfert, B.D., Yserentant, H.: A class of iterative methods for solving saddle point problems. Numer. Math.56, 645–666 (1990)Google Scholar
  3. 3.
    Boggio, T.: Sul moto stazionario lento di una sfera in un liquido viscoso. Rend. Circ. Mat. Palermo30, 65–81 (1910)Google Scholar
  4. 4.
    Brezzi, F., Douglas, J.: Stabilized mixed methods for the Stokes problem. Numer. Math.53, 225–235 (1988)Google Scholar
  5. 5.
    Duren, P.: Theory ofH p spaces, 1. Ed. New York: Academic Press: 1970Google Scholar
  6. 6.
    Garabedian, P.R.: Free boundary flows of a viscous liquid. Commun. Pure Appl. Math.19, 421–434 (1966)Google Scholar
  7. 7.
    Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations, 1. Ed. Berlin Heidelberg New York: Springer 1986Google Scholar
  8. 8.
    Trefethen, L.N.: Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Stat. Comput.I, 82–102 (1980)Google Scholar
  9. 9.
    Trefethen, L.N.: SCPACK User's Guide, Numerical Analysis Report 89-2, Dept. of Mathematics, MIT, 1989Google Scholar
  10. 10.
    Verführt, R.: A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem. IMA J. Numer. Anal.4, 412–455 (1984)Google Scholar
  11. 11.
    Wittum, G.: Multigrid methods for Stokes and Navier-Stokes equations. Transforming smoothers. Algorithms and numerical results. Techn. Rep. 446, Sonderforschungsbereich 123, Universität Heidelberg (1988) or Numer. Math.54, 543–563 (1989)Google Scholar
  12. 12.
    Zygmund, A.: Trigonometric series, Volumes I&II, 2nd Ed. Cambridge University Press, Cambridge 1959Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • W. Kratz
    • 1
  • A. Peyerimhoff
    • 1
  1. 1.Abteilung MathematikUniversität UlmUlmGermany

Personalised recommendations