Advertisement

Numerische Mathematik

, Volume 58, Issue 1, pp 215–229 | Cite as

Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation

  • T. Ortega
  • J. M. Sanz-Serna
Article

Summary

The “good” Boussinesq equationu tt =−u xxxx +u xx +(u2) xx has recently been found to possess an interesting soliton-interaction mechanism. In this paper we study the nonlinear stability and the convergence of some simple finite-difference schemes for the numerical solution of problems involving the “good” Boussinesq equation. Numerical experimentas are also reported.

Subject classifications

AMS(MOS): 65M10 CR: G.1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Frutos, J., Sanz-Serna, J.M.:h-dependent stability thresholds avoid the need for a priori bounds in nonlinear convergence proofs. In: Fatunla, S.O. (ed.) Computational Mathematics III, Proceedings of the Third International Conference held in Benin City, Nigeria, January 1988. Dublin: Boole Press (to appear)Google Scholar
  2. 2.
    de Frutos, J., Sanz-Serna, J.M.: Split-step spectral schemes for nonlinear Dirac systems. J. Comput. Phys.83, 407–423 (1989)Google Scholar
  3. 3.
    López-Marcos, J.C.: Estabilidad de Discretizaciones no Lineales. Tesis Doctoral, Universidad de Valladolid. Valladolid 1985Google Scholar
  4. 4.
    López-Marcos, J.C., Sanz-Serna, J.M.: A definition of stability for nonlinear problems. In: Strehmel, K. (ed.) Numerical treatment of differential equations,Proceedings of the fourth seminar “NUMDIFF-4” held in Halle, 1987, pp. 216–226. Leipzig. Teubner-Texte zur Mathematik 1988Google Scholar
  5. 5.
    López-Marcos, J.C., Sanz-Serna, J.M.: Stability and convergence in numerical analysis III: Linear investigation of nonlinear stability. IMA J. Numer. Anal.7, 71–84 (1988)Google Scholar
  6. 6.
    Manoranjan, V.S., Mitchell, A.R., Morris J.LL.: Numerical solution of the “good” Boussinesq equation. SIAM J. Sci. Stat. Comput.5, 946–957 (1984)Google Scholar
  7. 7.
    Manoranjan, V.S., Ortega, T., Sanz-Serna, J.M.: Soluton and anti-soliton interactions in the “good” Boussinesq equation. J. Math. Phys.29, 1964–1968 (1988)Google Scholar
  8. 8.
    Ortega, T.: Solución Numérica de la Ecuación “Buena” de Boussinesq. Tesis Doctoral, Universidad de Valladolid. Valladolid 1988Google Scholar
  9. 9.
    Sanz-Serna, J.M.: Stability and convergence in numerical analysis I: Linear problems, a simple, comprehensive account. In: Halle, J.K., Martinez-Amores, P. (eds.) Nonlinear differential equations and applications, pp. 64–113. Boston. Pitman 1985Google Scholar
  10. 10.
    Sanz-Serna, J.M., Palencia, C.: A general equivalence theorem in the theory of discretization methods. Math. Comput.45, 143–152 (1985)Google Scholar
  11. 11.
    Stetter, H.J.: Analysis of discretization methods for ordinary differential equations. Berlin: Springer 1973Google Scholar
  12. 12.
    Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equation. Numer. Math.53, 459–484 (1988)Google Scholar
  13. 13.
    Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations. II: Numerical nonlinear Schroedinger equation. J. Comput. Phys.55, 203–230 (1984)Google Scholar
  14. 14.
    Weideman, J.A.C., Herbst, B.M.: Split-step methods for the nonlinear Schroedinger equation. SIAM J. Numer. Anal.23, 485–507 (1986)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • T. Ortega
    • 1
  • J. M. Sanz-Serna
    • 1
  1. 1.Departamento de Matemática Aplicada y Computación, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations