Advertisement

Numerische Mathematik

, Volume 58, Issue 1, pp 129–134 | Cite as

The instability of some gradient methods for ill-posed problems

  • Bertolt Eicke
  • Alfred K. Louis
  • Robert Plato
Article

Summary

For the solution of linear ill-posed problems some gradient methods like conjugate gradients and steepest descent have been examined previously in the literature. It is shown that even though these methods converge in the case of exact data their instability makes it impossible to base a-priori parameter choice regularization methods upon them.

Subject classifications

AMS(MOS): 65J10 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alifanov, O.M., Rumjancev, S.V.: On the stability of iterative methods for the solution of linear ill-posed problems, Soviet Math. Dokl.20, 1133–1136 (1979)Google Scholar
  2. 2.
    Brakhage, H.: On ill-posed problems and the method of conjugate gradients. In: Engl, H.W., Groetsch, C.W. (eds.) Proc. of the Alpine-U.S. Seminar on Inverse and Ill-Posed Problems, pp. 165–175. Boston: Academic Press 1986Google Scholar
  3. 3.
    Daniel, J.W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal.4, 10–26 (1967)Google Scholar
  4. 4.
    Engl, H.W.: Necessary and sufficient conditions for convergence of regularization methods for solving linear operator equations of the first kind, Numer. Funct. Anal. Optimization3, 201–222 (1981)Google Scholar
  5. 5.
    Gilyazov, S.F.: Iterative solution methods for inconsistent linear equations with nonselfadjoint operators, Moscow Univ. Comput. Math. & Cybern.1, 8–13 (1977)Google Scholar
  6. 6.
    Gilyazov, S.F., Regularizing algorithms based on the conjugate-gradient method, U.S.S.R. Comput. Maths. Math. Phys.26, 8–13 (1986)Google Scholar
  7. 7.
    Groetsch, C.W.: Generalized inverses of linear operators, 1st Ed. New York: Dekker 1977Google Scholar
  8. 8.
    Groetsch, C.W.: The theory of Tikhonov regularization for Fredholm equations of the first kind, 1st Ed. Boston: Pitman 1984Google Scholar
  9. 9.
    Krasnosel'skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutiskii, Ya.B., Stetsenko, V.Ya.: Approximate solution of operator equations (engl. translation from russian), 1st Ed. Groningen: Wolters-Noordhoff 1972Google Scholar
  10. 10.
    Langlois, W.E.: Conditions for termination of the method of steepest descent after a finite number of iterations. IBM J. Res. Develop.10, 98–99 (1966)Google Scholar
  11. 11.
    Louis, A.K.: Convergence of the conjugate gradient method for compact operators. In: Engl, H.W., Groetsch, C.W. (eds.) Proc of the Alpine-U.S. Seminar on Inverse and Ill-Posed Problems, pp. 177–183, 1st Ed. Boston: Academic Press 1986Google Scholar
  12. 12.
    Louis, A.K.: Inverse und schlecht gestellte Probleme,xx Ed. Stuttgart: Teubner 1989Google Scholar
  13. 13.
    McCormick, S.F., Rodrigue, G.H.: A uniform approach to gradient methods for linear operator equations. J. Math. Anal. Appl.49, 275–285 (1975)Google Scholar
  14. 14.
    Nemirov'skii, A.S.: The regularizing properties of the adjoint gradient method in ill-posed problems. U.S.S.R. Comput. Maths. Math. Phys.26, 7–16 (1986)Google Scholar
  15. 15.
    Nemirov'skii, A.S., Polyak, B.T.: Iterative methods for solving linear ill-posed problems under precise information I. Engineering Cybernetics22, 1–11 (1984)Google Scholar
  16. 16.
    Nemirov'skii, A.S., Polyak, B.T.: Iterative methods for solving linear ill-posed problems under precise information II, Engineering Cybernetics22, 50–56 (1984)Google Scholar
  17. 17.
    Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables, 1st Ed. New York: Academic Press 1970Google Scholar
  18. 18.
    Plato, R.: Optimal algorithms for linear ill-posed problems yield regularization methods. Numer. Funct. Anal. Optimization (accepted)Google Scholar
  19. 19.
    Samanskii, V.E.: Certain calculational schemes for iterative processes (russian). Ukrain. Math. Zh.14, 100–109 (1962)Google Scholar
  20. 20.
    van der Sluis, A., van der Vorst, H.A.: The rate of convergence of conjugate gradients. Numer. Math.48, 543–560 (1986)Google Scholar
  21. 21.
    Winther, R.: Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal.17, 14–17 (1980)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Bertolt Eicke
    • 1
  • Alfred K. Louis
    • 1
  • Robert Plato
    • 1
  1. 1.Fachbereich MathematikTechnische Universität BerlinBerlin 12

Personalised recommendations