Numerische Mathematik

, Volume 58, Issue 1, pp 109–127 | Cite as

Parallel and superfast algorithms for Hankel systems of equations

  • G. Heinig
  • P. Jankowski


Utilizing kernel structure properties a unified construction of Hankel matrix inversion algorithms is presented. Three types of algorithms are obtained: 1)O(n2) complexity Levinson type, 2)O (n) parallel complexity Schur-type, and 3)O(n log2n) complexity “asymptotically fast” ones. All algorithms work without additional assumption (like strong nonsingularity).

Subject classifications

AMS(MOS) 65F05 15A09 47B35 93B15 CR:G1.3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abukov, W.M.: Kernel structure and the inversion of Toeplitz and Hankel matrices. Izvestija vuzov (mat.)7, 3–8 (1986) (in Russian)Google Scholar
  2. 2.
    Aho, A.V., Hopkraft, J.E., Ullman, J.D.: The design and analysis of computer algorithms, 2. Ed. Addison-Wesley, Reading 1976Google Scholar
  3. 3.
    Antoulas, A.C.: On recursiveness and related topics in linear systems. IEEE Trans. on autom. control, AC-31,12, 1121–1135 (1986)Google Scholar
  4. 4.
    Baker, G., Graves-Morris, P.: Padé approximants, 1. Ed. Addison-Wesley 1981Google Scholar
  5. 5.
    Bareiss, E.H.: Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices. Numer. Math.13, 404–424 (1969)Google Scholar
  6. 6.
    Ben-Artzi, A., Shalom, T.: On the inversion of Toeplitz matrices and close to Toeplitz matrices. Linear Alg. Appl.75, 173–192 (1986)Google Scholar
  7. 7.
    Bitmead, R.R., Andersen, B.D.D.: Asymptotically fast solution of Toeplitz and related systems of linear equations. Linear Alg. Appl.34, 103–116 (1980)Google Scholar
  8. 8.
    Brent, R.P., Gustavson, F.G., Yun, D.Y.Y.: Fast solution of Toeplitz systems of equations and computation of the Padé approximation. J. Algorithms1, 259–295 (1980)Google Scholar
  9. 9.
    Bultheel, A.: Laurent series and their Padé approximations. 1. Ed. Basel, Boston: Birkhäuser 1987Google Scholar
  10. 10.
    Bultheel, A.: Recursive relations for block Hankel and Toeplitz systems. J. Comput. Appl. Math.10, 301–354 (1984)Google Scholar
  11. 11.
    de Hoog, F.: A new algorithm for solving Toeplitz systems of equations. Linear Alg. Appl.88/89, 123–138 (1987)Google Scholar
  12. 12.
    Delsarte, P., Genin, Y.V., Kamp, Y.G.: A generalization of the Levinson algorithm for Hermitian Toeplitz matrices with any rank profile. IEEE Trans. Acoust., Speech, Sign. Proc.33, 964–971 (1985)Google Scholar
  13. 13.
    Gragg, W.B., Lindquist, A.: On the partial realization problem. Linear Alg. Appl.50, 277–319 (1983)Google Scholar
  14. 14.
    Gohberg, I., Kailath, T., Koltracht, I., Lancaster, P.: Linear complexity parallel algorithms for linear systems of equations with recursive structure. Linear Alg. Appl.88/89, 271–316 (1987)Google Scholar
  15. 15.
    Heinig, G.: Inversion of Toeplitz and Hankel matrices with singular sections. Wissensch. Zeitschrift d. TH Karl-Marx-Stadt25, 326–333 (1983)Google Scholar
  16. 16.
    Heinig, G.: Formulas and algorithms for block Hankel matrix inversion and partial realization. In: Progress in systems and control theory. MTNS-89. Boston. Birkhäuser (to appear)Google Scholar
  17. 17.
    Heinig, G., Jankowski, P.: Kernel structure of block Hankel matrices. Mathem. Nachr. (submitted for publication)Google Scholar
  18. 18.
    Heinig, G., Jungnickel, U.: Hankel matrices generated by Markov parameters, Hankel matrix extension, partial realization, and Pade approximation. In: Ed. Operator theory and systems, pp. 231–254. Basel, Boston, Stuttgart. Birkhäuser 1986Google Scholar
  19. 19.
    Heinig, G., Rost, K.: Algebraic methods for Toeplitz-like matrices and operators. Akademie-Verlag Berlin and Basel, Boston, Stuttgart: Birkhäuser 1984Google Scholar
  20. 20.
    Heinig, G., Rost, K.: Inversion of matrices with displacement structure. Integral Equ. Operator Theory (to appear)Google Scholar
  21. 21.
    Kailath, T.: A theorem of 1. Schur and its impact on modern signal processing. In: Schur, I. (ed.) Method in operator theory and signal processing, pp. 31–50. Basel, Boston, Stuttgart, Birkhäuser 1986Google Scholar
  22. 22.
    Lev-Ari, H., Kailath, T.: Triangular factorization of structured matrices. In: Schur, I. (ed.) Methods in operator theory and signal processing, pp. 301–324. Basel, Boston, Stuttgart 1986Google Scholar
  23. 23.
    Levinson, N.: The Wiener RMS error in filter design and prediction. J. Math. Phys.25, 261–278 (1947)Google Scholar
  24. 24.
    Trench, W.F.: An algorithm for inversion of finite Toeplitz matrices. J. SIAM12, 515–522 (1964)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. Heinig
    • 1
  • P. Jankowski
    • 1
  1. 1.Sektion Mathematik PSF 964Technische Universität Karl-Marx-StadtKarl-Marx-StadtGerman Democratic Republic

Personalised recommendations