Advertisement

Numerische Mathematik

, Volume 58, Issue 1, pp 11–33 | Cite as

Analysis and comparison of several component mode synthesis methods on one-dimensional domains

  • Frédéric Bourquin
Article

O Summary

Component mode synthesis methods enable to compute the eigenpairs of a differential operator on a domain that can be subdivided in different subdomains on each of which the eigenpairs of the same operator are assumed to be partially known. Error estimates are given for several of these methods applied to second order elliptic operators on one-dimensional domains. They are partly tied to an argument which is called here “asymptotic hidden regularity” of eigenfunctions of an elliptic operator.

Subject classifications

AMS(MOS): 34B25 35P20 65L15 65L60 CR: G 1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuska, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis (Ciarlet, P.G., Lions, J.L. (ed.)) vol II. North-Holland, Amsterdam (to appear)Google Scholar
  2. 2.
    Benfield, W.A., Hruda, R.F.: Vibration analysis of structures by component mode substitution. AIAA J.9 (7) 1255–1261 (1971)Google Scholar
  3. 3.
    Bernadou, M., Fayolle, S., Lene, F.: Numerical analysis of junctions between plates. Rapport I.N.R.I.A. n0 865, juillet 1988Google Scholar
  4. 4.
    Bourquin, F.: Synthèse modale d'opérateurs elliptiques du second ordre. C.R. Acad. Sci. Paris, Sér. I,309, 919–922 (1989)Google Scholar
  5. 5.
    Bourquin, F.: Domain decomposition and eigenvalues of second order operators: convergence analysis. J. Math. Pures. Appl. 1990 (submitted)Google Scholar
  6. 6.
    Bourquin, F., Ciarlet, P.G.: Modélisation des vibrations d'une multi-structure formée d'un corps élastique tridimensionnel et d'une plaque. C.R. Acad. Sci. Paris, Sér. I,307, 435–438 (1988)Google Scholar
  7. 7.
    Bourquin, F., Ciarlet, P.G., Gruais, I.: Junctions between plates and rods: the eigenvalue problem (in preparation)Google Scholar
  8. 8.
    Ciarlet, P.G.: A justification of the Von Karman equations. Arch. Kat. Mech. Anal.73, 349–389 (1980)Google Scholar
  9. 9.
    Ciarlet, P.G., Le Dret, H., Nzengwa, R.: Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque. C. R. Acad. Sci. Paris, Sér. I,305, 55–58 (1987)Google Scholar
  10. 10.
    Ciarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of high-order accuracy for non-linear boundary value problems, III: Eigenvalue problems. Numer. Math.12, 120–133 (1968)Google Scholar
  11. 11.
    Courant, R., Hilbert, D.: Methods of mathematical Physics, Vol. 2. New York: Interscience 1953Google Scholar
  12. 12.
    Craig, R.R.Jr.: A review of time domain and frequency domain component mode synthesis methods, joint ASCE/ASME mechanics conference, Albuquerque, New Mexico, June 24–26, A.M.D. vol. 67, 1985Google Scholar
  13. 13.
    Craig, R., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J.6, 1313–1321 (1968)Google Scholar
  14. 14.
    Dunford, N., Schwartz, J.: Linear Operators. New York: Interscience, Wiley 1963Google Scholar
  15. 15.
    Destuynder, P.: Remarks on dynamic substructuring. Eur. J. Mech. SOLIDS8, 201–218 (1989)Google Scholar
  16. 16.
    Gladwell, B.M.L.: Branch mode analysis of vibrating systems. J. Sound Vib.1, 41–59 (1964)Google Scholar
  17. 17.
    Goldman, R.L.: Vibration analysis of dynamic partitioning. AIAA J.7, 1152–1154 (1969)Google Scholar
  18. 18.
    Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J.4, 678–685 (1965)Google Scholar
  19. 19.
    Imbert, J.F.: Calcul des structures par éléments finis, cours de l'ENSAE. Toulouse Cépadues, 1979Google Scholar
  20. 20.
    Jezequel, L.: Synthèse modale: théorie et extensions. Thèse d'état, université Claude Bernard, 1985Google Scholar
  21. 21.
    Le Dret, H.: Modélisation d'une plaque pliée. C.R. Acad. Sci. Paris, Sér. I,305, 571–573 (1987)Google Scholar
  22. 22.
    Le Dret, H.: Modeling of, the junction between two rods. J. Math. Pures Appl.68, 365–397 (1989)Google Scholar
  23. 23.
    Lions, J.L.: Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, tome 1. RMA, Masson, 1988Google Scholar
  24. 24.
    Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1, Paris: Dunod 1968Google Scholar
  25. 25.
    Mac Neal, R.H.: A hybrid method of component mode synthesis. Comput. Struct.,1, 581–601 (1971)Google Scholar
  26. 26.
    Morand, H.: Méthodes de détermination approachée des modes propres de vibration en calcul des structures; sous-structuration dynamique. ONERA R.T.2, 13238, RY OOOR (1977)Google Scholar
  27. 27.
    Morand, H., Ohayon, R.: Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element. Int. J. Numer. Methods Eng.14, 741–755 (1979)Google Scholar
  28. 28.
    Rubin, S.: Improved component mode representation for structural dynamic analysis AIAA J.13, 995–1006 (1975)Google Scholar
  29. 29.
    Taylor, A.E.: Introduction to Functional Analysis. New York: Wiley 1958Google Scholar
  30. 30.
    Valid, R.: Une méthode de calcul des structures au flambage par sous-structuration et synthèse modale. C. R. Acad. Sci. Paris, Ser. II294, 299–302 (1982)Google Scholar
  31. 31.
    Weinberger, H.: Variational Methods for Eigenvalue Approximations. SIAM, Philadelphia, 1974Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Frédéric Bourquin
    • 1
  1. 1.Laboratoire Mixte LCPC/CNRS, Laboratoire des Matériaux et Structures du Génie CivilLaboratoire Central des Ponts et ChausséesParisFrance

Personalised recommendations