On the formation of glycogen and trehalose in baker's yeast

  • S. Grba
  • E. Oura
  • H. Suomalainen
Food Microbiology

Summary

More glycogen and trehalose is formed in aerobically incubated baker's yeast than under anaerobic conditions, glucose being a more favourable source of sugar than maltose. The regulation of the formation of glycogen in aerobic incubations of non-proliferating baker's yeast in the presence of glucose can be explained by the action of the activators and inactivators (Rothman & Cabib, 1967). The level of ATP in the cell does not affect the formation of trehalose in the same way as it influences the formation of glycogen.

The incubation temperature chosen can be used to manipulate the relative proportions of glycogen and trehalose in baker's yeast. 30°C is the optimum for the formation of glycogen, and at 45°C none at all is formed. The inhibition of the biosynthesis of glycogen is not, at least primarily, a consequence of the effect of the elevated temperature on the enzymes taking part in the formation of glycogen. The optimum temperature for the formation of trehalose is 45°C, and at this temperature baker's yeast containing as much as 20% trehalose can be obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fales,F.W. (1960). J. Biol. Chem.235, 1255–1257PubMedGoogle Scholar
  2. Küenzi,M.T., Fiechter,A. (1969). Arch. Mikrobiol.64, 396–407PubMedGoogle Scholar
  3. McAnally,R.A., Smedley-MacLean,I. (1935). Biochem. J.24, 1872–1876Google Scholar
  4. Operti,M.S., Panek,A. (1968). Cienc. Cult. (São Paulo)20, 747–754Google Scholar
  5. Oura,E., Suomalainen,H. (1970), J. Inst. Brew., Lond.76, 536–545Google Scholar
  6. Panek,A. (1963). Arch.Biochem.Biophys.100, 422–425Google Scholar
  7. Payen,R. (1949). Can.J.Res.27B, 749–756Google Scholar
  8. Polakis,S.E., Bartley,W. (1966). Biochem.J.99, 521–533PubMedGoogle Scholar
  9. Pollock,G.E., Holmström,C.D. (1951). Cereal Chem.28, 499–505Google Scholar
  10. Rothman,L.B., Cabib,E. (1966). Biochem.Biophys.Res.Commun.25, 644–650Google Scholar
  11. Rothman,L.B., Cabib,E. (1967). Biochemistry6, 2107–2112Google Scholar
  12. Rothman,L.B., Cabib,E. (1969). Biochemistry8, 3332–3334PubMedGoogle Scholar
  13. Savioja,T., Miettinen,J.K. (1966a). Acta Chem.Scand.20, 2435–2443PubMedGoogle Scholar
  14. Savioja,T., Miettinen,J.K. (1966b). Acta Chem. Scand.20, 2451–2455PubMedGoogle Scholar
  15. Sjöblom,L., Stolpe, E. (1964). Acta Acad. Aboensis, Ser. B24, Nr. 3Google Scholar
  16. Stewart,L.C., Richtmeyer,N.K., Hudson,C.S. (1950). J.Am.Chem.Soc.72, 2059–2061Google Scholar
  17. Suomalainen,H., Pfäffli,S. (1961). J.Inst.Brew., Lond.67, 249–254Google Scholar
  18. Trevelyan,W.E., Harrison,J.S. (1956). Biochem.J.63, 23–33PubMedGoogle Scholar
  19. White,J. (1954). Yeasts technology. London: Chapman & HallGoogle Scholar
  20. Willstätter,R., Rohdewald,M. (1937). Hoppe-Seyler's Z. Physiol. Chem.247, 269–280Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • S. Grba
    • 1
  • E. Oura
    • 1
  • H. Suomalainen
    • 1
  1. 1.Research Laboratories of the State Alcohol Monopoly (Alko)Helsinki 10Finland

Personalised recommendations