Skip to main content
Log in

The high resolution subvalenced-shell absorption spectrum of zinc I

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The absorption spectrum of atomic zinc due to transitions from the first subvalenced-shell has been reinvestigated at high resolution using synchrotron radiation as the background source. The data on the six series converging onto the inverted doublet of the first excited state of zinc II (3d 94s 2 2 D 3/2, 5/2) have been extended to highern-values. The splitting of the leading members of thef-series converging towards the lower limit (3d 94s 2(2 D 5/2)nf a, b) is observed for the first time (n=4: (5.7±1) cm−1). The experimental data is analysed using two different theoretical approaches. First, the overall consistency of the data is analysed using a six-channel two-limit MQDT model. As a consequence, the value of the energy of the2 D 5/2-limit is revised to be (138,493.7±1) cm−1. The second approach consists of Slater-Condon type calculations for the 3d 94s 2 np (n=4, ..., 9) configurations. Three different methods for calculating energy levels are presented:

  1. (a)

    numerical diagonalisation ofd 9 p energy matrix in the appropriate coupling scheme and fitting of relevant parameters to experimental level energies.

  2. (b)

    the Shortley and Fried method [1, 2].

  3. (c)

    analytical formulae inj c K-coupling with fitting as under (a).

It is shown that method (c), which is easily handled, offers sufficient accuracy for the configurations 3d 94s 2 np (n>4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shortley, G.H., Fried, B.: Phys. Rev.54, 739 (1938)

    Google Scholar 

  2. Shortley, G.H., Fried, B.: Phys. Rev.54, 749 (1938)

    Google Scholar 

  3. Beutler, H.: Z. Phys.86, 495 (1933)

    Google Scholar 

  4. Beutler, H.: Z. Phys.86, 19 (1933)

    Google Scholar 

  5. Beutler, H.: Z. Phys.87, 176 (1933)

    Google Scholar 

  6. Beutler, H.: Z. Phys.87, 710 (1933)

    Google Scholar 

  7. Beutler, H.: Z. Phys.91, 132 (1934)

    Google Scholar 

  8. Beutler, H., Demeter, W.: Z. Phys.91, 218 (1934)

    Google Scholar 

  9. Garton, W.R.S., Connerade, J.P.: Astrophys. J.155, 667–675 (1969)

    Google Scholar 

  10. Mansfield, M.W.D., Connerade, J.P.: Proc. R. Soc. London Ser. A359, 389–410 (1978)

    Google Scholar 

  11. Back, C.G., White, M.D., Pecjev, V., Ross, K.J.: J. Phys. B14, 1497–1507 (1981)

    Google Scholar 

  12. Connerade, J.P., Baig, M.A., Garton, W.R.S., McGlynn, S.P.: J. Phys. B13, L 705 (1980)

    Google Scholar 

  13. Baig, M.A., Connerade, J.P., Pantelouris, M.: EGAS Conference. Heidelberg, Vol. 5A (Geneva, EPS), 109 (1981)

  14. Baig, M.A., Hormes, J., Connerade, J.P., McGlynn, S.P.: J. Phys. B14, L 725 (1981)

    Google Scholar 

  15. Diffraction gratings — ruled and holographic — handbook. Longjumeau, France: Jobin-Yvon Company 1976

  16. Yoshino, K.: J. Opt. Soc. Am.60, 9, 1220–1229 (1970)

    Google Scholar 

  17. Baig, M.A., Connerade, J.P.: J. Phys. B17, 1785–1796 (1984)

    Google Scholar 

  18. Racah, G.: Phys. Rev.61, 536 (1942)

    Google Scholar 

  19. Condon, E.U., Shortley, G.H.: The theory of atomic spectra. Cambridge: Cambridge University Press 1935

    Google Scholar 

  20. Fano, U.: Phys. Rev.124, 1866 (1961)

    Google Scholar 

  21. Fano, U., Cooper, J.W.: Phys. Rev.137 A, 1364 (1965)

    Google Scholar 

  22. Seaton, M.J.: Proc. R. Soc. London Ser.88, 801 (1966)

    Google Scholar 

  23. Seaton, M.J.: Prog. Phys.46, 167 (1983)

    Google Scholar 

  24. Lu, K.T.: Phys. Rev. A4, 579 (1971)

    Google Scholar 

  25. Lu, K.T., Fano, U.: Phys. Rev. A2, 81 (1970)

    Google Scholar 

  26. Fano, U.: J. Opt. Soc. Am.65, 979–987 (1975)

    Google Scholar 

  27. Robaux, O., Aymar, M.: Comp. Phys. Commun.25, 223–236 (1982)

    Google Scholar 

  28. Brown, C.M., Tilford, S.G.: J. Opt. Soc. Am.65, 12, 1404–1409 (1975)

    Google Scholar 

  29. K. Sommer: PhD Thesis, Bonn (1986)

  30. Sobelman, I.I.: Atomic spectra and radiative transitions. In: Springer Series in Chemical Physics, Vol. 1. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  31. Shenstone: Trans. R. Soc. A235, 195 (1936)

    Google Scholar 

  32. Cowan, R.D., Andrew, K.L.: Phys. Rev.55, 502 (1964)

    Google Scholar 

  33. Martin, W.L., Sugar, J., Tech, J.L.: J. Opt. Soc. Am.62, 12 (1972)

    Google Scholar 

  34. Marr, G.V., Austin, J.M.: J. Phys. B2, 2, 107–114 (1969)

    Google Scholar 

  35. Mansfield, M.M.D.: J. Phys. B14, 2781–2792 (1981)

    Google Scholar 

  36. Cowan, R.D., Griffin, D.C.: J. Opt. Soc. Am.66, 1010–1014 (1976)

    Google Scholar 

  37. Martin, N.L.S.: J. Phys. B17, 1797–1805 (1984)

    Google Scholar 

  38. Wybourne, B.G.: Phys. Rev. A137, 364–368 (1965)

    Google Scholar 

  39. Racah, G., Stein, J.: Phys. Rev.156, 58–64 (1967)

    Google Scholar 

  40. Cowan, R.D.: The theory of atomic structure and spectra. Berkeley, Los Angeles, California: University of California Press 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, K., Baig, M.A. & Hormes, J. The high resolution subvalenced-shell absorption spectrum of zinc I. Z Phys D - Atoms, Molecules and Clusters 4, 313–328 (1987). https://doi.org/10.1007/BF01384883

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384883

PACS

Navigation