Skip to main content
Log in

Multi-channel reaction matrix theory and configuration-interaction in the discrete and in the continuous spectrum. Inclusion of closed channels and derivation of quantum defect theory

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

We present a derivation of Multichannel Quantum Defect Theory (MQDT) which is based on the configuration-interaction in the continuum (CIC) and reaction matrix (K-matrix) formalisms, generalized so that closed channels are included. The whole development focuses on obtaining and utilizing eigenfunctions composed of smooth parts only. Whereas the theories of Seaton and Fano depend on the use of irregular or unbound functions, ours does not. No separation of configuration space into inner and outer space is necessary. Furthermore, the present theory allows in a practical way the transfer of information from one part of the spectrum to another byinterpolation — as opposed to the standard ab initio MQDT which is limited toextrapolation from the continuous to the discrete spectrum. The formalism is developed for the physically important Coulomb potential. However, its structure is such that it allows the easy determination of those parts which must be altered to accomodate extension to other potentials. Furthermore, it permits the execution of reliable calculations which employ a basis of numerical fixed-core Hartree-Fock (HF) functions for the singly excited configurations, of multiconfigurational HF (MCHF) for the spectroscopic valence states and of analytic virtual orbitals for the correlation vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fano, U., Prats, F.: J. Natl. Acad. Sci. (India) A33, 533 (1963). As regards early applications to atomic photoionization using the configuration-interaction in the continuum approach, see the reviews by Altick, P.L.: In: Excited states in quantum chemistry. Nicolaides, C.A., Beck, D.R. (eds.), p. 361. Dordrecht, Boston, Lancaster: Reidel 1978; Starace, A.F.: In: Encyclopedia of Physics. Vol. 31: Corpuscles and radiation in matter I. Mehlhorn, W. (ed.), p. 1. Berlin, Heidelberg, New York: Springer-Verlag 1982

    Google Scholar 

  2. Ramaker, D.E., Schrader, D.M.: Phys. Rev. A9, 1980 (1974)

    Google Scholar 

  3. Burke, P.G., Robb, D.: Adv. At. Mol. Phys.11, 144 (1975)

    Google Scholar 

  4. E.g.: Shell model approach to nuclear reactions. Mahaux, C., Weidenmüller, H.A. (eds.). Amsterdam: North-Holland 1969. In this book, material and original references on theR-matrix,K-matrix, eigenchannel and related formalisms can be found

  5. Fano, U.: J. Opt. Soc. Am.65, 979 (1975)

    Google Scholar 

  6. Fano, U., Lee, C.M.: Phys. Rev. Lett.31, 1573 (1973)

    Google Scholar 

  7. See articles by Beck, D.R., Nicolaides, C.A.: In: Excited states in quantum chemistry. Nicolaides, C.A., Beck, D.R. (eds.). Dordrecht, Boston, Lancaster: Reidel 1978

    Google Scholar 

  8. Nicolaides, C.A.: In: Advanced theories and computational approaches to the electronic structure of molecules. Dykstra, C.E. (ed.), p. 161. Dordrecht, Boston, Lancaster: Reidel 1984

    Google Scholar 

  9. Komninos, Y., Aspromallis, G., Nicolaides, C.A.: Phys. Rev. A27, 1865 (1983)

    Google Scholar 

  10. Seaton, M.J.: Rep. Prog. Phys.46, 167 (1983); J. Phys. B15, 3899 (1982)

    Google Scholar 

  11. Fano, U.: Phys. Rev. A17, 93 (1978); see also Mies, F.H.: Phys. Rev. A20, 1773 (1979)

    Google Scholar 

  12. Greene, C., Fano, U., Strinati, G.: Phys. Rev. A19, 1485 (1979)

    Google Scholar 

  13. Greene, C.H., Rau, A.R.P., Fano, U.: Phys. Rev. A26, 2441 (1982)

    Google Scholar 

  14. Noble, B.: In: The state of the art in numerical analysis. Jacobs, D.A. (ed.), p. 947. New York: Academic Press 1977

    Google Scholar 

  15. Komninos, Y., Nicolaides, C.A.: Phys. Rev. A34, 1995 (1986)

    Google Scholar 

  16. Aspromallis, G., Komninos, Y., Nicolaides, C.A.: J. Phys. B17, L151 (1984)

  17. Nicolaides, C.A., Aspromallis, G.: J. Phys. B16, L 251 (1983)

    Google Scholar 

  18. Petsalakis, I.D., Theodorakopoulos, G., Nicolaides, C.A., Buenker, R.J.: J. Chem. Phys.82, 912 (1985); J. Chem. Phys.81, 3161 (1984)

    Google Scholar 

  19. Beck, D.R., Nicolaides, C.A.: Phys. Letts.61 A, 227 (1977)

    Google Scholar 

  20. Lu, K.T.: Phys. Rev. A4, 579 (1971)

    Google Scholar 

  21. Lee, C.M., Lu, K.T.: Phys. Rev. A8, 124 (1973)

    Google Scholar 

  22. Aymar, M.: Phys. Rep.110, 163 (1984)

    Google Scholar 

  23. Froese-Fisher, C., Hansen, J.E.: Phys. Rev. A24, 631 (1981)

    Google Scholar 

  24. Aspect, A., Bauche, J., Fonseca, A.L.A., Grangier, P., Roger, G.: J. Phys. B17, 1761 (1984)

    Google Scholar 

  25. Froese-Fischer, C.: Comp. Phys. Comm.14, 145 (1978)

    Google Scholar 

  26. For atoms, Bates, G.N.: Comp. Phys. Comm.8, 220 (1974)

    Google Scholar 

  27. Abramowitz, M., Stegan, I.A. (eds.): Handbook of mathematical functions, p. 258. Mineola: Dover 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komninos, Y., Nicolaides, C.A. Multi-channel reaction matrix theory and configuration-interaction in the discrete and in the continuous spectrum. Inclusion of closed channels and derivation of quantum defect theory. Z Phys D - Atoms, Molecules and Clusters 4, 301–312 (1987). https://doi.org/10.1007/BF01384882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384882

PACS

Navigation