Skip to main content
Log in

Pseudomolecular atoms: geometry of two-electron intrashell excited states

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

Supermultiplet patterns indicating pronounced collective motion of electrons are prominent among intrashell excited states of helium or alkaline earth atoms. Many aspects of these patterns have previously been discussed in terms of an empirical rovibrator model, e-core-e, analogous to alinear triatomic molecule. However, this has appeared incompatible with a dimensional scaling treatment that predicts pseudomolecular features and relates properties of some excited states to the ground state, but corresponds to abent equilibrium geometry. We examine both the full two-electron Hamiltonian, including angular momentum, and a prototype model for angular correlation which restricts the two particles to the surface of a sphere. By virtue of the boundary conditions imposed by the Jacobian volume element, we find that alinear equilibrium geometry is not allowed. If the Hamiltonian is transformed to reduce the Jacobian to unity, an infinite barrier appears in the effective potential when the electrons are 180° apart and equidistant from the nucleus. We find the supermultiplet patterns, including some “antimolecular” features, are consistent with a floppy butbent geometry, anasymmetric rotor model. The most probable interelectron angle ϑ m varies markedly with the principal quantum number and also with the space-quantization of the angular momentum with respect to body-fixed axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hund, F.: The history of quantum theory, p. 74. London: Harrap 1974

    Google Scholar 

  2. Sommerfeld, A.: Ann. Phys.51, 1 (1916); Phys. Z.17, 491 (1917)

    Google Scholar 

  3. Debye, P.: Phys. Z.17, 507 (1917)

    Google Scholar 

  4. Stern, O.: Z. Phys.7, 249 (1921)

    Google Scholar 

  5. Kellman, M.E., Herrick, D.R.: J. Phys. B11, L755 (1978); Phys. Rev. A21, 418 (1980);22, 1536 (1980); Herrick, D.R., Kellman, M.E., Poliak, R.D.: Phys. Rev. A22, 1517 (1980); Herrick, D.R.: Adv. Chem. Phys.52, 1 (1983)

  6. Rehmus, P., Kellman, M.E., Berry, R.S.: Chem. Phys.31, 239 (1978); Yuh, H.-J., Ezra, G.S., Rehmus, P., Berry, R.S.: Phys. Rev. Lett.47, 497 (1981); Ezra, G.S., Berry, R.S.: Phys. Rev. A28, 1974 (1983); Krause, J.L., Morgan, J.D., Berry, R.S.: Phys. Rev. A35, 3189 (1987)

    Google Scholar 

  7. Watanabe, S., Lin, C.D.: Phys. Rev. A34, 823 (1986)

    Google Scholar 

  8. Berry, R.S., Krause, J.L.: Adv. Chem. Phys.70, 35 (1988)

    Google Scholar 

  9. Herschbach, D.R.: J. Chem. Phys.84, 838 (1986); Faraday Disc. Chem. Soc.84, 465 (1988)

    Google Scholar 

  10. Loeser, J.G., Herschbach, D.R.: J. Phys. Chem.89, 3444 (1985); J. Chem. Phys.84, 3882, 3893 (1986);86, 2114, 3512 (1987)

    Google Scholar 

  11. Doren, D.J., Herschbach, D.R.: Chem. Phys. Lett.118, 115 (1985); Phys. Rev. A34, 2654, 2665 (1986); J. Chem. Phys.85, 4557 (1986);87, 433 (1987); J. Phys. Chem.92, 1816 (1988)

    Google Scholar 

  12. Goodson, D.Z., Herschbach, D.R.: Phys. Rev. Lett.58, 1628 (1987); J. Chem. Phys.86, 4997 (1987)

    Google Scholar 

  13. Loeser, J.G.: J. Chem. Phys.86, 5635 (1987)

    Google Scholar 

  14. Herrick, D.R., Stillinger, F.H.: Phys. Rev. A11, 42 (1975)

    Google Scholar 

  15. Read, F.H.: J. Phys. B10, 449 (1977)

    Google Scholar 

  16. Van der Merwe, P.duT.: J. Chem. Phys.81, 5976 (1984); Phys. Rev. A34, 3452 (1986)

    Google Scholar 

  17. Ojha, P.C., Berry, R.S.: Phys. Rev. A36, 1575 (1987) Ezra, G.S., Berry, R.S.: Phys. Rev. A25, 1513 (1982);28, 1989 (1983)

    Google Scholar 

  18. Nikitin, S.I., Ostrovsky, V.N.: J. Phys. B18, 4349, 4371 (1985)

    Google Scholar 

  19. Townes, C.H., Schawlow, A.L.: Microwave spectroscopy, pp. 31–35; 83–91. New York: McGraw-Hill 1955

    Google Scholar 

  20. Lipsky, L., Anania, R., Conneely, M.J.: At. Data Nucl. Data Tables20, 127 (1977)

    Google Scholar 

  21. Kellman, M.E.: Phys. Rev. Lett.55, 1738 (1985)

    Google Scholar 

  22. Pekeris, C.L.: Phys. Rev.115, 1216 (1959)

    Google Scholar 

  23. Midtdal, J.: Phys. Rev.138, A1010 (1965)

  24. Oberoi, R.S.: J. Phys. B5, 1120 (1972)

    Google Scholar 

  25. Coulson, C.A.: Valence, p. 40. London: Oxford University Press 1961

    Google Scholar 

  26. Hunter, J.E., Berry, R.S.: Phys. Rev. A36, 3042 (1987)

    Google Scholar 

  27. Chanderasekhar, S., Herzberg, G.: Phys. Rev.98, 1050 (1955)

    Google Scholar 

  28. Breit, G.: Phys. Rev.35, 565 (1930) Bhatia, A.K., Temkin, A.: Rev. Mod. Phys.36, 1050 (1964)

    Google Scholar 

  29. Smalley, R.E., Wharton, L., Levy, D.H., Chandler, D.W.: J. Mol. Spect.66, 375 (1977)

    Google Scholar 

  30. Wilson, E.B., Decius, J.C., Cross, P.C.: Molecular vibrations, p. 367–370. New York: McGraw-Hill 1955 Wilson, E.B.: J. Chem. Phys.4, 313 (1936)

    Google Scholar 

  31. Zare, R.N.: Angular momentum, p. 277–283. New York: Wiley 1988

    Google Scholar 

  32. Kivelson, D., Wilson, E.B.: J. Chem. Phys.20, 1575 (1952)

    Google Scholar 

  33. Bernstein, R.B., Herschbach, D.R., Levine, R.D.: J. Phys. Chem.91, 5365 (1987)

    Google Scholar 

  34. Frey, J.G., Howard, B.J.: Chem. Phys.111, 33 (1987)

    Google Scholar 

  35. Crance, M., Armstrong, L.: Phys. Rev. A26, 694 (1982)

    Google Scholar 

  36. Feagin, J.M., Briggs, J.S.: Phys. Rev. Lett.57, 984 (1986)

    Google Scholar 

  37. Klar, H.: Phys. Rev. Lett.57, 66 (1986); Z. Phys. D — Atoms, Molecules and Clusters3, 353 (1986);6, 107 (1987)

    Google Scholar 

  38. Klar, H.: Comments At. Mol. Phys.19, 171 (1987);21, 235 (1988)

    Google Scholar 

  39. Wannier, G.H.: Phys. Rev.90, 817 (1953); Macek, J., Feagin, J.M.: J. Phys. B18, 2161 (1985); Macek, J., Watanabe, S.: Comments At. Mol. Phys.19, 313 (1987)

    Google Scholar 

  40. Herschbach, D.R.: Angew. Chem. Int. Ed. Engl.26, 1221 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herschbach, D.R., Loeser, J.G. & Watson, D.K. Pseudomolecular atoms: geometry of two-electron intrashell excited states. Z Phys D - Atoms, Molecules and Clusters 10, 195–210 (1988). https://doi.org/10.1007/BF01384854

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384854

PACS

Navigation