Skip to main content
Log in

The developmental potencies of the regeneration blastema of the axolotl limb

  • Published:
Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen Aims and scope Submit manuscript

Summary

  1. 1.

    The developmental potencies of limb regeneration blastemas of the axolotl (Ambystoma mexicanum) were tested by transplanting them to the flank or to the orbit under various experimental conditions.

  2. 2.

    Early upper-arm blastemas transplanted singly to the damaged flank musculature or to the orbit can form forearm skeletal elements in addition to hand cartilages (digital and carpal elements).

  3. 3.

    Fusion of the mesenchyme of several early upper-arm blastemas into one transplant leads to the formation of a single regenerate. In this case an upper-arm element may differentiate in addition to the more distal limb regions.

  4. 4.

    In both transplantation sites single hand plates of paddle-shaped upper-arm blastemas form exclusively hand structures. Combination of mesenchyme of several hand plates, however, can result in the differentiation of forearm elements in addition to hand structures. In one case even an upper-arm element was formed.

  5. 5.

    The single transplantation of carpal blastemas of various stages leads to the development of hand structures only. Combination of the mesenchyme of several carpal blastemas on the flank shows no improvement of regional differentiation. When, however, the same combination experiment is performed in the orbit, the carpal blastemas of the oldest stage used are able fo form forearm elements as well.

  6. 6.

    The first conclusion that can be drawn from these results is that the early upperarm blastema possesses the information for the development of all the structures lost by amputation. Morphogenetic stump influences are not necessary for the formation of these structures.

  7. 7.

    The second conclusion is that the limb pattern in the transplants is established autonomously, because mesenchyme of several blastemas combined in random orientation gives rise to a single, normally oriented regenerate.

  8. 8.

    The third conclusion is that mesenchyme which is already differentiating into hand structures at the time of transplantation (hand plate of paddle-shaped upper-arm blastema, and oldest carpal blastema) upon dedifferentiation can be induced to form more proximal structures as well. Therefore this mesenchyme still possesses the information for the development of structures which it would never have formedin situ.

  9. 9.

    In the transplants that do not regress completely digital elements are always formed. According as regression is less extensive, or the mass of transplanted mesenchyme is enlarged experimentally, carpal elements are realized next, then forearm elements, and finally also the upper-arm element. This suggests that in the normal blastema distal differentiation tendencies appear first — under the influence of the epidermis — while successively more proximal differentiation tendencies arise as the blastema increases in mass. The disto-proximal succession of differentiation tendencies would continue until definitive differentiation begins in the most proximal mesenchyme, whence it proceeds in a proximo-distal direction.

  10. 10.

    Since transplanted mesenchyme can form more structures than are lost by amputation if its mass is increased, it is likely that during normal regeneration the level of amputation determines what will be formed by regulating the mass of the blastema, while inhibitory stump influences may prevent the development of supernumerary structures from the blastema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeloos, M., Lecamp, M.: Sur la production de formations anormales et multiples dans les membres du Triton par transplantation de régénérats. C. R. Acad. Sci. (Paris)192, 639–643 (1931).

    Google Scholar 

  • Amprino, R.: Aspects of limb morphogenesis in the chicken. In: Organogenesis, ed. by R. L. DeHaan and H. Ursprung, p. 256–282. New York: Holt, Rinehart & Winston 1965.

    Google Scholar 

  • Balinsky, B. I.: Das Extremitätenseitenfeld, seine Ausdehnung und Beschaffenheit. Wilhelm Roux' Arch. Entwickl.-Mech. Org.130, 704–746 (1933).

    Google Scholar 

  • —: Über die zeitliche Verhältnisse bei der Extremitäteninduktion. Wilhelm Roux' Arch. Entwickl.-Mech. Org.136, 250–285 (1937).

    Google Scholar 

  • Bell, E., Saunders, J. W., Zwilling, E.: Limb development in the absence of the ectodermal ridge. Nature (Lond.)184, 1736–1737 (1959).

    Google Scholar 

  • Bischler, V.: L'influence du squelette dans la régénération et les potentialités des divers territoires du membre duTriton cristatus. Rev. suisse Zool.33, 431–560 (1926).

    Google Scholar 

  • Bodemer, C. W.: The development of nerve-induced supernumerary limbs in the adult newt,Triturus viridescens. J. Morph.102, 555–582 (1958).

    Google Scholar 

  • Bohn, H.: Analyse der Regenerationsfähigkeit der Insektenextremität durch Amputations- und Transplantationsversuche an Larven der afrikanischen Schabe (Blattaria). I. Mitteilung: Regenerationspotenzen. Wilhelm Roux' Arch. Entwickl.-Mech. Org.156, 49–74 (1965a).

    Google Scholar 

  • Bohn, H.: Analyse der Regenerationsfähigkeit der Insektenextremität durch Amputations- und Transplantationsversuche an Larven der afrikanische Schabe (Blattaria). II. Mitteilung: Achsendetermination. Wilhelm Roux' Arch. Entwickl.-Mech. Org.156, 449–503 (1965b).

    Google Scholar 

  • —: Transplantationsexperimente mit interkalarer Regeneration zum Nachweis eines sich segmental wiederholenden Gradienten im Bein vonLeucophaea (Blattaria). Verh. dtsch. zool. Ges., Suppl.30, 499–508 (1966).

    Google Scholar 

  • Both, N. J. de: Enhancement of the self-differentiation capacity of the early limb blastema by various experimental procedures. In: Regeneration in animals and related problems, ed. by V. Kiortsis and H. A. L. Trampusch, p. 420–426. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • —: Transplantation immunity in the axolotl (Ambystoma mexicanum) studies by blastemal grafts. J. exp. Zool.173, 147–158 (1970).

    PubMed  Google Scholar 

  • Bovet, D.: Les territoires de régénération; leurs propriétés étudiées par la méthode de déviation du nerf. Rev. suisse Zool.37, 83–145 (1930).

    Google Scholar 

  • Breedis, C.: Induction of accessory limbs and of sarcoma in the newt (Triturus viridescens) with carcinogenic substances. Cancer Res.12, 861–866 (1952).

    PubMed  Google Scholar 

  • Burgess, A. M. C.: The developmental potentialities of regeneration blastema cell nuclei as determined by nuclear transplantation. J. Embryol. exp. Morph.18, 27–41 (1967).

    PubMed  Google Scholar 

  • Butler, E. G., Blum, H. F.: Supernumerary limbs of urodele larvae resulting from localized ultraviolet light. Develop. Biol.7, 218–233 (1963).

    PubMed  Google Scholar 

  • Carlson, B. M.: Studies on the mechanism of implant-induced supernumerary limb formation inUrodeles. I. The histology of supernumerary limb formation in the adult newt,Triturus viridescens. J. exp. Zool.164, 227–241 (1967).

    PubMed  Google Scholar 

  • Church, R. B., McCarthy, B. J.: Ribonucleic acid synthesis in regenerating and embryonic liver. I. The synthesis of new species of RNA during regeneration of mouse liver after partial heptatectomy. J. molec. Biol.23, 459–475 (1967a).

    PubMed  Google Scholar 

  • — —: Ribonucleic acid synthesis in regenerating and embryonic liver. II. The synthesis of RNA during embryonic liver development and its relationship to regenerating liver. J. molec. Biol.23, 477–486 (1967b).

    PubMed  Google Scholar 

  • Coward, S. J.: Effects of actinomycin D on regeneration give evidence of sequential gene activation. Nature (Lond.)219, 1257–1258 (1968).

    Google Scholar 

  • David, L.: Das Verhalten von Extremitätenregeneraten des weißen und pigmentierten Axolotl bei heteroplastischer, heterotoper und orthotoper Transplantation und sukzessiver Regeneration. Wilhelm Roux' Arch. Entwickl.-Mech. Org.126, 457–511 (1932).

    Google Scholar 

  • Efimov, M. I.: Über den Mechanismus des Regenerationsprozesses. II. Mitteilung — Die Rolle der Haut im Prozeß der Regeneration eines Organs beim Axolotl. Z. Biol. U.R.S.S.2 214–219 (1933).

    Google Scholar 

  • —: Kann der Entwicklungsgang junger Blastemzellen durch Übertragung auf die Amputations-Wundfläche eines anderen Organs verändert werden ? Bull. Biol. Méd. exp. U.R.S.S.6, 75–77 (1938).

    Google Scholar 

  • Faber, J.: An experimental analysis of regional organization in the regenerating fore limb of the axolotl (Ambystoma mexicanum). Arch. Biol. (Liege)71, 1–72 (1960).

    Google Scholar 

  • —: Autonomous morphogenetic activities of the amphibian regeneration blastema. In: Regeneration in animals and related problems, ed. by V. Kiortsis and H. A. L. Trampusch, p. 404–419. Amsterdam: North-Holland Publ. Co.1965.

    Google Scholar 

  • Giorgi, P. de: Les potentialités des régénérats chezSalamandra maculosa. Rev. suisse Zool.31, 1–52 (1924).

    Google Scholar 

  • —, Guyénot, E.: Les potentialités des régénérats; croissance et différenciation. C. R. Soc. Biol. (Paris)89, 488–491 (1923).

    Google Scholar 

  • Goetinck, P. F.: Genetic aspects of skin and limb development. Curr. Top. develop. Biol.1, 253–283 (1966).

    Google Scholar 

  • Goss, R. J.: The unification of regenerates from symmetrically duplicated fore limbs. J. exp. Zool.133, 191–210 (1956a).

    Google Scholar 

  • —: The relation of bone to the histogenesis of cartilage in regenerating fore limbs and tails of adultTriturus viridescens. J. Morph.98, 89–116 (1956b).

    Google Scholar 

  • Gräper, L.: Extremitätentransplantationen an Anuren. I. Mitteilung. Wilhelm Roux' Arch. Entwickl.-Mech. Org.51, 284–309 (1922a).

    Google Scholar 

  • —: Extremitätentransplantationen an Anuren. II. Mitteilung: Reverse Transplantationen. Wilhelm Roux' Arch. Entwickl.-Mech. Org.51, 587–609 (1922b).

    Google Scholar 

  • Gurdon, J. B.: The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. exp. Morph.10, 622–640 (1962).

    PubMed  Google Scholar 

  • —: Nuclear transplantation in Amphibia and the importance of stable nuclear changes in promoting cellular differentiation. Quart. Rev. Biol.38, 54–78 (1963).

    Google Scholar 

  • —, Graham, C. F.: Nuclear changes during cell differentiation. Sci. Progr. Oxford55, 259–277 (1967).

    Google Scholar 

  • Gurwitsch, A.: Über den Begriff des embryonalen Feldes. Wilhelm Roux' Arch. Entwickl.-Mech. Org.51, 383–415 (1922).

    Google Scholar 

  • Guyénot, E.: Le problème morphogénétique dans la régénération des Urodèles; détermination et potentialités des régénérats. Rev. suisse Zool.34, 127–154 (1927).

    Google Scholar 

  • —, Dinichert-Favarger, J., Galland, M.: L'exploration du territoire de la patte anterieure du Triton (asymétrie, duplicature, orientation des régénérats). Rev. suisse Zool.55, Suppl. 2, 1–120 (1948).

    Google Scholar 

  • —, Schotté, O. E.: Démonstration de l'existence de territoires spécifiques de régénération par la méthode de la déviation des troncs nerveux. C. R. Soc. Biol. (Paris)94, 1050–1052 (1926).

    Google Scholar 

  • — —: Greffe de régénérat et différenciation induite. C. R. Soc. Phys. Hist. nat. Genève44, 21–23 (1927).

    Google Scholar 

  • Harrison, R. G.: On the reversal of laterality in the limbs ofAmblystoma embryos. Anat. Rec.10, 197 (1916).

    Google Scholar 

  • —: On relations of symmetry in transplanted limbs. J. exp. Zool.32, 1–136 (1921).

    Google Scholar 

  • —: The effect of reversing the medio-lateral or transverse axis of the fore limb bud in the salamander embryo (Amblystoma punctatum Linn.) Wilhelm Roux' Arch. Entwickl.-Mech. Org.106, 469–502 (1925).

    Google Scholar 

  • Hearson, L. E.: An analysis of apical proliferation in the fore limb regeneration blastema of the axolotlAmbystoma mexicanum. Ph. D. thesis: Michigan State University. East Lansing, Mich. 1966.

    Google Scholar 

  • Holtzer, H., Avery, G., Holtzer, S.: Some properties of the regenerating limb blastema cells of salamanders. Biol. Bull.107, 313 (1954).

    Google Scholar 

  • Jordan, M.: Development of regeneration blastemas implanted into the brain. Folia biol. (Kraków)8, 41–53 (1960).

    Google Scholar 

  • —: Investigations of the differentiation of blastemas implanted into the brain of Amphibia. Folia biol. (Krakow)13, 205–255 (1965).

    Google Scholar 

  • Kieny, M.: Role inducteur du mésoderme dans la différenciation précoce du bourgeon de membre chez l'embryon de poulet. J. Embryol. exp. Morph.8, 457–467 (1960).

    PubMed  Google Scholar 

  • Kiortsis, V.: Potentialités du territoire patte chez le Triton (adultes, larves, embryons). Rev. suisse Zool.60, 301–110 (1953).

    Google Scholar 

  • —, Droin, A.: La régénération caudale des Urodèles (Induction et réactivité du territoire). J. Embryol. exp. Morph.9, 77–96 (1961).

    PubMed  Google Scholar 

  • Lender, Th.: Recherches expérimentales sur la nature et les propriétés de l'inducteur de la régénération des yeux de la planairePolycelis nigra. J. Embryol. exp. Morph.4, 196–216 (1956).

    Google Scholar 

  • —: L'inhibition spécifique de la différenciation du cerveau des planaires d'eau douce en régénération. J. Embryol. exp. Morph.8, 291–301 (1960).

    PubMed  Google Scholar 

  • Liosner, L. D.: Untersuchungen über die Eigenschaften der Regenerationsknospe des Amphibienschwanzes. Bull. Biol. Méd. exp. U.R.S.S.6, 262–265 (1938).

    Google Scholar 

  • —, Woronzowa, M. A., Kusmina, N. A.: Regenerationspotenz der knochenlosen Extremität. Wilhelm Roux' Arch. Entwickl.-Mech. Org.134, 738–750 (1936).

    Google Scholar 

  • Locatelli, P.: Der Einfluß des Nervensystems auf die Regeneration. Wilhelm Roux' Arch. Entwickl.-Mech. Org.114, 686–770 (1929).

    Google Scholar 

  • Lodyzhenskaya, V.: La transplantation des bourgeons de régénération des extrémités de l'axolotl. C. R. Acad. Sci. U.R.S.S.15, 99–101 (1928).

    Google Scholar 

  • ]Mettetal, C.: La régénération des membres chez la salamandre et le Triton. Arch. Anat. (Strasbourg)28, 1–214 (1939).

    Google Scholar 

  • —: Influence du niveau d'amputation sur les potentialités des régénérats chez les amphibiens urodèles. C. R. Acad. Sci. (Paris)234, 1808–1810 (1952).

    Google Scholar 

  • Michael, M. I., Faber, J.: The self-differentiation of the paddle-shaped limb regenerate, transplanted with normal and reversed proximo-distal orientation after removal of the digital plate (Ambystoma mexicanum). Arch. Biol. (Liege)72, 301–330 (1961).

    Google Scholar 

  • Milojević, B. D.: Beiträge zur Frage über die Determination der Regenerate (Vorläufige Mitteilung). Arch. mikr. Anat.130, 80–94 (1924).

    Google Scholar 

  • Monroy, A.: Richerche sulla rigenerazione degli arti negli Anfibi Urodeli. Nota III. Osservazioni su rigenerati formatisi su doppie superfici di sezione e considerazioni sui processi determinativi della rigenerazione. Arch. Zool. ital.31, 151–172 (1946).

    Google Scholar 

  • Nassonov, N. V.: Morphogenesis following the insertion of parts of various organs under the skin of the axolotl. C. R. Acad. Sci. U.R.S.S.19, 127–144 (1938).

    Google Scholar 

  • Needham, J.: Biochemistry and morphogenesis. Cambridge: University Press 1942.

    Google Scholar 

  • Oberheim, K. W., Luther, W.: Versuche über die Extremitätenregeneration von Salamanderlarven bei umgekehrter Polarität des Amputationsstumpfes. Wilhelm Roux' Arch. Entwickl.-Mech. Org.150, 373–382 (1958).

    Google Scholar 

  • Pietsch, P.: The effects of heterotopic musculature on myogenesis during limb regeneration inAmblystoma larvae. Anat. Rec.141, 295–304 (1961 a).

    PubMed  Google Scholar 

  • —: Differentiation in regeneration. 1. The development of muscle and cartilage following deplantation of regenerating limb blastemata ofAmblystoma larvae. Develop. Biol.3, 255–264 (1961 b).

    PubMed  Google Scholar 

  • Polezhaev, L. V.: La valeur de la structure de l'organe et les capacités du blastème régénératif dans le processus de la détermination du régénérat. Bull. biol. Fr. Belg.70, 54–85 (1936).

    Google Scholar 

  • —: Über die Determination des Regenerats. Izv. Akad. Nauk U.S.S.R.2, 151–247 (1937).

    Google Scholar 

  • —: The loss and restoration of regenerative capacity in the limbs of tailless Amphibia. Biol. Rev.21, 141–147 (1946).

    Google Scholar 

  • —, Teplits, N. A., Tuchkova, S. Y.: Factors governing recovery of the ability of axolotls to regenerate limbs after its suppression by X-rays. Dokl.(Proc.)Acad.Sci.U.S.S.R., Biological Science Section150, 690–693 (1963).

    Google Scholar 

  • Rose, S. M.: Methods of initiating limb regeneration in adult Anura. J. exp. Zool.95, 149–170 (1944).

    Google Scholar 

  • —: Specific inhibition during differentiation. Ann. N. Y. Acad. Sci.60, 1136–1153 (1955).

    PubMed  Google Scholar 

  • —: Polarized inhibitory effects during regeneration inTubularia. J. Morph.100, 187–206 (1957).

    Google Scholar 

  • —: Polarized control of regional structure inTabularia. Develop. Biol.7, 488–501 (1963).

    Google Scholar 

  • Ruben, L. N.: The effects of implanting anuran cancer into non-regenerating and regenerating larval urodele limbs. J. exp. Zool.128, 29–47 (1955).

    Google Scholar 

  • —, Frothingham, M. L.: The importance of innervation and superficial wounding in urodele accessory limb formation. J. Morph.102, 91–118 (1958).

    Google Scholar 

  • Saunders, J. W.: The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. exp. Zool.108, 363–403 (1948).

    Google Scholar 

  • Schaxel, J.: Zur Determination der Regeneration der Axolotl-extremität. C. R. Acad. Sci. U.R.S.S.4, 246–248 (1934).

    Google Scholar 

  • Schneider, G.: Der Einfluß des Nervensystems auf die Regeneration der Extremitäten der Axolotl. Zool. Jb. Abt. allg. Zool. Physiol. Tiere60, 73–102 (1942).

    Google Scholar 

  • Schotté, O. E., Hummel, K. P.: Lens induction at the expense of regenerating tissues of amphibians. J. exp. Zool.80, 131–165 (1939).

    Google Scholar 

  • Schwidefsky, G.: Entwicklung und Determination der Extremitätenregenerate bei den Molchen. Wilhelm Roux' Arch. Entwickl.-Mech. Org.132, 57–114 (1935).

    Google Scholar 

  • Searls, R. L.: Development of the embryonic chick limb bud in avascular culture. Develop. Biol.17, 382–399 (1968).

    PubMed  Google Scholar 

  • Singer, M., Ray, E. K., Peadon, A. M.: Regional growth differences in the early regenerate of the adult newt,Triturus viridescens, correlated with the position of the larger nerves. Folia biol. (Kraków)12, 347–362 (1964).

    Google Scholar 

  • Skowron, S., Walknowska, J.: The fate of regeneration blastemas implanted into the body cavity. Folia biol. (Kraków)7, 113–126 (1959).

    Google Scholar 

  • Stocum, D. L.: The urodele limb regeneration blastema: a self-organizing system. I. Differentiationin vitro. Develop. Biol.18, 441–456 (1968a).

    PubMed  Google Scholar 

  • —: The urodele limb regeneration blastema: a self-organizing system. II. Morphogenesis and differentiation of autografted whole and fractional blastemas. Develop. Biol.18, 457–480 (1968b).

    PubMed  Google Scholar 

  • Stone, L. S.: Regeneration of the retina, iris and lens. In: Regeneration in vertebrates, ed. by C. S. Thornton, p. 3–14. Chicago: University of Chicago Press 1959.

    Google Scholar 

  • —: Experiments dealing with the inhibition and release of lens regeneration in eyes of adult newts. J. exp. Zool.161, 83–94 (1966).

    PubMed  Google Scholar 

  • Swett, F. H.: Experiments in splitting the regenerating limb bud (Diemictylus viridescens). Anat. Rec.40, 297–309 (1928).

    Google Scholar 

  • Tardent, P.: Developmental aspects of regeneration in coelenterates. In: Regeneration in animals and related problems, ed. by V. Kiortsis and H. A. L. Trampusch, p. 71–88. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Thornton, C. S.: Influence of head skin on limb regeneration in urodele amphibians. J. exp. Zool.150, 5–15 (1962).

    PubMed  Google Scholar 

  • —, Thornton, M. T.: The regeneration of accessory limb parts following epidermal cap transplantation in Urodeles. Experientia (Basel)21, 146 (1965).

    Google Scholar 

  • Tschumi, P. A.: The growth of the hind limb bud ofXenopus laevis and its dependence upon the epidermis. J. Anat. (Lond.)91, 149–173 (1957).

    Google Scholar 

  • Verwoerd, C. D. A.: Het herstel van het regeneratievermogen van bestraalde extremiteiten bij axolotl-larven. M. D. Thesis: Amsterdam 1968.

  • Waddington, C. H.: Organisers and genes. Cambridge: University Press 1947.

    Google Scholar 

  • Weiss, P.: Regeneration aus doppeltem Extremitätenquerschnitt (amTriton cristatus). Anz. Akad. Wiss. Wien61, 45–46 (1924).

    Google Scholar 

  • —: Unabhängigkeit der Extremitätenregeneration vom Skelett (beiTriton cristatus). Arch. mikrosk. Anat. Entwickl.-Mech.104, 359–394 (1925).

    Google Scholar 

  • —: Ganzregenerate aus halbem Extremitätenquerschnitt. Wilhelm Roux' Arch. Entwickl.- Mech. Org.107, 1–53 (1926).

    Google Scholar 

  • —: Potenzprüfung am Regenerationsblastem. I. Extremitätenbildung aus Schwanzblastem im Extremitätenfeld bei Triton. Wilhelm Roux' Arch. Entwickl.-Mech. Org.111, 317–341 (1927).

    Google Scholar 

  • —: Principles of development. New York: Holt 1939.

    Google Scholar 

  • Wolff, E., Hampé, A.: Sur la régulation de la patte de poulet après résection d'un segment intermédiaire du bourgeon de membre. C. R. Soc. Biol. (Paris)148, 154–156 (1954).

    Google Scholar 

  • Ziller-Sengel, C.: Recherches sur la inhibition de la régénération du pharynx chez les planaires. I. Mise en évidence d'un facteur auto-inhibiteur de la régénération du pharynx. J. Embryol. exp. Morph.18, 91–105 (1967).

    PubMed  Google Scholar 

  • Zwilling, E.: Interaction between limb bud ectoderm and mesoderm in the chick embryo. II. Experimental limb duplication. J. exp. Zool.132, 173–187 (1956).

    Google Scholar 

  • —: Limb morphogenesis. Advanc. Morphogenes.1, 301–330 (1961).

    Google Scholar 

  • —: Development of fragmented and of dissociated limb bud mesoderm. Develop. Biol.9, 20–37 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Aided by a grant from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

I wish to thank Prof. P. D. Nieuwkoop for the hospitality extended to me as a guest worker at the Hubrecht Laboratory. I am very grateful to Dr. J. Faber for stimulating advice and for critical reading the manuscript. Mr. P. C. Sanders, M. Sc., kindly helped with the statistical treatment of the data. Finally I thank Mrs. M. van Deventer for technical assistance, and Mr. W. Veringa for animal care.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Both, N.J. The developmental potencies of the regeneration blastema of the axolotl limb. W. Roux' Archiv f. Entwicklungsmechanik 165, 242–276 (1970). https://doi.org/10.1007/BF01380787

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01380787

Keywords

Navigation