Skip to main content
Log in

Superconvergence phenomenon in the finite element method arising from averaging gradients

  • A Short Note on Romberg Integration
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We study a superconvergence phenomenon which can be obtained when solving a 2nd order elliptic problem by the usual linear elements. The averaged gradient is a piecewise linear continuous vector field, the value of which at any nodal point is an average of gradients of linear elements on triangles incident with this nodal point. The convergence rate of the averaged gradient to an exact gradient in theL 2-norm can locally be higher even by one than that of the original piecewise constant discrete gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal.10, 582–606 (1973)

    Google Scholar 

  2. Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7, 112–124 (1970)

    Google Scholar 

  3. Bramble, J.H., Schatz, A.H.: Estimates for spline projection. RAIRO Anal. Numér.10, 5–37 (1976)

    Google Scholar 

  4. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method. Math. Comput.31, 94–111 (1977)

    Google Scholar 

  5. Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam-New York-Oxford: North-Holland 1978

    Google Scholar 

  6. Giarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math.9, 394–430 (1967)

    Google Scholar 

  7. Dautov, R.Z.: Superconvergence of finite-element method schemes with numerical integration for quasilinear fourth-order elliptic equations. Differential Equations18, 818–824 (1982)

    Google Scholar 

  8. Dautov, R.Z., Lapin, A.V.: Difference schemes of an arbitrary order of accuracy for quasilinear elliptic equations (Russian). Izv. Vysš. Učebn. Zaved. Matematika209, 24–37 (1979)

    Google Scholar 

  9. Dautov, R.Z., Lapin, A.V.: Investigation of the convergence, in mesh norms, of finite-element-method schemes with numerical integration for fourth-order elliptic equations. Differential Equations17, 807–817 (1981)

    Google Scholar 

  10. Descloux, J.: Interior regularity and local convergence of Galerkin finite element approximations for elliptic equations. Topics in Numerical Analysis II. New York: Academic Press, pp. 27–41, 1975

    Google Scholar 

  11. Douglas, J.J.: A superconvergence result for the approximate solution of the heat equation by a collocation method. Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. (Proc. Sympos. Univ. of Maryland, 1972, Aziz, A.K. (ed.)). New York-London: Academic Press, pp. 475–490, 1972

    Google Scholar 

  12. Douglas, J.J., Dupont, T.: Superconvergence for Galerkin methods for the two point boundary problem via local projections. Numer. Math.21, 270–278 (1973)

    Google Scholar 

  13. Douglas, J.J., Dupont, T.: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems. In: Topics in Numerical Analysis. Miller, J.J.H. (ed.), pp. 89–92. London: Academic Press 1973

    Google Scholar 

  14. Douglas, J.J., Dupont, T.: Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math.22, 99–109 (1974)

    Google Scholar 

  15. Douglas, J.J., Dupont, T., Wheeler, M.F.: Some super-convergence results for anH 1-Galerkin procedure for the heat equation. Computing Methods in Engineering, Part 1 (Proc. Sympos., Versailles, 1973). Berlin-Heidelberg-New York: Springer 1974, pp. 288–311

    Google Scholar 

  16. Douglas, J.J., Dupont, T., Wheeler, M.F.: AnL estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numér.8, 61–66 (1974)

    Google Scholar 

  17. Houstis, E.N.: Application of method of collocation on lines for solving nonlinear hyperbolic problems. Math. Comput.31, 443–456 (1977)

    Google Scholar 

  18. Johson, C., Pitkäranta, J.: Analysis of some mixed finite element methods related to reduced integration. Math. Comput.33, 375–400 (1982)

    Google Scholar 

  19. Lapin, A.V.: Schemes of the finite element methods for some classes of variational inequalities, error estimates, algorithms (Russian). (Proc. of the fifth conference on variational-difference methods in mathematical physics, Moscow. 1983) (To appear in 1984)

  20. Lesaint, P., Zlámal, M.: Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numér.13, 139–166 (1979)

    Google Scholar 

  21. Lindberg, B.: Error estimation and iterative improvement for discretization algorithms. BIT20, 486–500 (1980)

    Google Scholar 

  22. Long, M.J., Morton, K.W.: The use of divided differences in finite element calculations. J. Inst. Math. Appl.19, 307–323 (1977)

    Google Scholar 

  23. Nečas, J.: Les méthodes directes en théorie des equations elliptiques. Masson, Paris, 1967

    Google Scholar 

  24. Neittaanmäki, P., Saranen, J.: A modified least squares FE-method for ideal fluid flow problems. J. Comput. Appl. Math.8, 165–169 (1982)

    Google Scholar 

  25. Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comput.28, 937–958 (1974)

    Google Scholar 

  26. Oganesjan, L.A., Ruhovec, L.A.: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary (Russian). Ž. Vyčisl. Mat. i Mat. Fiz.9, 1102–1120 (1969)

    Google Scholar 

  27. Oganesjan, L.A., Ruhovec, L.A.: Variational-difference methods for the solution of elliptic equations (Russian). Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979

    Google Scholar 

  28. Schatz, A.H., Wahlbin, L.B.: Interior maximum norm estimates for finite element methods. Math. Comput.31, 414–442 (1977)

    Google Scholar 

  29. Strang, G., Fix, G.: An analysis of the finite element method. Englewood Cliffs-New Jersey: Prentice Hall 1973

    Google Scholar 

  30. Thomée, V.: Spline approximation and difference schemes for the heat equation. Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. of Maryland, 1972, A.K. Aziz (ed.). New York-London: Academic Press, 1972, pp. 711–746

    Google Scholar 

  31. Thomée, V.: Some error estimates in Galerkin methods for parabolic equations. Mathematical Aspects of Finite Element Methods (Proc. of the the conference, Rome, 1975). Berlin-Heidelberg-New York: Springer 1977, pp. 353–362

    Google Scholar 

  32. Thomée, V.: High order local approximations to derivatives in the finite element method. Math. Comput.31, 652–660 (1977)

    Google Scholar 

  33. Thomée, V., Wendroff, B.: Convergence estimates for Galerkin method for variable coefficient initial value problems. SIAM J. Numer. Anal.11, 1059–1068 (1974)

    Google Scholar 

  34. Vacek, J.: Dual variational principles for an elliptic partial differential equation. Apl. Mat.21, 5–27 (1976)

    Google Scholar 

  35. Volkov, E.A.: A rapidly converging quadratures for solving Laplace's equation on polygons. Soviet Math.19, 154–157 (1978)

    Google Scholar 

  36. Wendland, W.L., Stephan, E., Hsiao, G.C.: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. Appl. Sci.1, 265–321 (1979)

    Google Scholar 

  37. Zienkiewicz, O.C., Cheung, Y.K.: The finite element method in structural and continuum mechanics. London: McGraw Hill 1967

    Google Scholar 

  38. Zlámal, M.: Some superconvergence results in the finite element method. Mathematical Aspects of Finite Element Methods (Proc. of the conference, Rome, 1975). Berlin-Heidelberg-New York: Springer 1977, pp. 353–362

    Google Scholar 

  39. Zlámal, M.: Superconvergence and reduced integration in the finite element method. Math. Comput.32, 663–685 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Křížek, M., Neittaanmäki, P. Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45, 105–116 (1984). https://doi.org/10.1007/BF01379664

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01379664

Subject Classifications

Navigation