Advertisement

Journal of comparative physiology

, Volume 104, Issue 3, pp 225–245 | Cite as

Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee

  • Rüdiger Wehner
  • Gary D. Bernard
  • Esther Geiger
Article

Summary

  1. 1.

    In the dorsal retina of the worker bee twisted and non-twisted rhabdoms (resp. retinulae) are analysed by serial LM- and EM-reconstructions. The straight retinulae restricted to the most dorsal 4–5 horizontal rows of ommatidia contain 9 long visual cells, whereas the twisted retinulae are composed of 8 long cells (nos. 1–8) and one basal short visual cell (cell no. 9). The ninth cell and two of the overlying long twisted cells (nos. 1 and 2) are ultraviolet cells (UV cells) which are the only receptors engaged in polarized light detection.

     
  2. 2.

    By rhabdom geometry two mirror-imaged types of rhabdoms can be discriminated (X- andY-type), which are randomly distributed in the retina. One class of retinulae twists clockwise, the other counterclockwise. The twist rate amounts to about 1°μm−1. The total twist angle is about 180° for the long and about 40° for the small UV cells.

     
  3. 3.

    In the focal plane of the dorsal part of the retina the microvilli of the long UV cells are all oriented perpendicularly to the horizontalz-axis of the eye. The basal ninth cells replace one of the overlying long UV cells. At their tips, the microvilli are also perpendicularly oriented to thez-axis.

     
  4. 4.

    By optical analysis polarization sensitivity (PS) and direction for maximum sensitivity (Φmax) are computed for the long as well as for the short UV cells. If the effective birefringence of the rhabdom is very low PS of the long twisted UV cell decreases to unity. However, PS of the short basal UV cells remains pronounced (PS=4.2 for a dichroic ratio of 5 and 7.1 for a dichroic ratio of 10).

    As birefringence increases, PS of the long, twisted UV cells increases, but PS of the short ninth cell first decreases to a minimum PS-value of near unity before increasing to high values. We propose the hypothesis that the overall birefringence of the bee's fused rhabdoms is very low (Δn<10−3).

     
  5. 5.

    For low birefringence the two types of short, ninth cells are maximally sensitive at planes that differ by 36°.

     
  6. 6.

    Histological as well as optical analysis suggest a minimum model fore-vector detection involving the UV receptors of only two twisted ommatidia: two ninth cells of different twist type act as polarization sensitive channels and the long UV cell(s) as a polarization insensitive channel.

     

Keywords

Retina Polarization Sensitivity Visual Cell Polarization Detection Dichroic Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H., Zwehl, V. v.: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964)Google Scholar
  2. Bernard, G. D.: Physiological optics of the fused rhabdom. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel), p. 78–97. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  3. Bernard, G. D., Wehner, R.: Dichroism, birefringence and structural twist in E-vector detectors of insects. Biol. Bull.149, 421 (1975)Google Scholar
  4. Born, M., Wolf, E.: Principles of optics, 3rd ed., p. 708–713. Oxford: Pergamon Press 1965Google Scholar
  5. Clarke, D., Graininger, J. F.: Polarized light and optical measurements. New York: Pergamon Press 1971Google Scholar
  6. Duelli, P.: A fovea for e-vector detection in the eye ofCataglyphis bicolor (Formicidae, Hymenoptera). J. comp. Physiol.102, 43–56 (1975)Google Scholar
  7. Duelli, P., Wehner, R.: The spectral sensitivity of polarized light orientation inCataglyphis bicolor (Formicidae, Hymenoptera). J. comp. Physiol.86, 37–53 (1973)Google Scholar
  8. Eguchi, E.: Fine structure and spectral sensitivities of retinular cells in the dorsal sector of compound eyes in the dragonflyAeschna. Z. vergl. Physiol.71, 201–218 (1971)Google Scholar
  9. Frisch, K. v.: The dance language and orientation of bees. Cambridge, Mass.: Harvard Univ. Press (1967)Google Scholar
  10. Gribakin, F. G.: Cellular basis of colour vision in the honey bee. Nature (Lond.)223, 639–641 (1969)Google Scholar
  11. Gribakin, F. G.: The distribution of the long wave photoreceptors in the compound eye of the honeybee as revealed by selective osmic staining. Vision Res.12, 1225–1230 (1972)PubMedGoogle Scholar
  12. Grundler, O. J.: Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifera), I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien verschiedener Augenbereiche und zur Perzeption linear polarisierten Lichtes. Cytobiol.9, 203–220 (1974)Google Scholar
  13. Hays, D., Goldsmith, T. H.: Microspectrophotometry of the visual pigment of the spider crab,Libinia emarginata. Z. vergl. Physiol.65, 218–232 (1969)Google Scholar
  14. Helversen, O. v., Edrich, W.: Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J. comp. Physiol.94, 33–47 (1974)Google Scholar
  15. Horridge, G. A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol.62, 1–37 (1969)Google Scholar
  16. Kirschfeld, K.: Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch.27b, 578–579 (1972)Google Scholar
  17. Kolb, G., Autrum, H.: Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges. J. comp. Physiol.94, 1–6 (1974)Google Scholar
  18. Laughlin, S. B., Horridge, G. A.: Angular sensitivity of retinula cells of dark-adapted worker bee. Z. vergl. Physiol.74, 329–335 (1971)Google Scholar
  19. Menzel, R.: Colour receptors in insects. In: The compound eye and vision of insects (ed. G. A. Horridge), p. 121–153. Oxford: Clarendon Press 1974Google Scholar
  20. Menzel, R.: Optische und elektrische Koppelung im Ommatidium mit fusioniertem Rhabdom. Verh. dtsch. zool. Ges.67, 33–36 (1975a)Google Scholar
  21. Menzel, R.: Polarization sensitivity in insect eyes with fused rhabdoms. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel), p. 372–387. Berlin-Heidelberg-New York: Springer (1975b)Google Scholar
  22. Menzel, R., Snyder, A. W.: Polarized light detection in the bee,Apis mellifera. J. comp. Physiol.88, 247–270 (1974)Google Scholar
  23. Minke, B., Wu, C. F., Pak, W. C.: Isolation of light-induced response of the central retinula cells from the electroretinogram ofDrosophila. J. comp. Physiol.98, 345–355 (1975)Google Scholar
  24. Ninomiya, N., Tominaga, Y., Kuwabara, M.: The fine structure of the compound eye of a damsel-fly. Z. Zellforsch.98, 17–32 (1969)PubMedGoogle Scholar
  25. Ribi, W. A.: The neurons of the first optic ganglion of the bee (Apis mellifera). Adv. Anat. Embryol. Cell Biol.50, 1–43 (1975)PubMedGoogle Scholar
  26. Roth, H., Menzel, R.: ERG ofFormica polyctena and selective adaptation. In: Information processing in the visual systems of arthropods (ed. R. Wehner), p. 177–181. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  27. Schinz, R.: Structural specialization in the dorsal retina of the bee,Apis mellifera. Cell Tiss. Res.162, 23–34 (1975)Google Scholar
  28. Seitz, G.: Polarisationsoptische Untersuchungen am Auge vonCalliphora erythrocephala. Z. Zellforsch.93, 525–529 (1968)Google Scholar
  29. Snyder, A. W., MeIntyre, P.: Polarization sensitivity of twisted fused rhabdoms. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel), p. 388–391. Berlin-Heidelberg-New York: Springer (1975)Google Scholar
  30. Snyder, A. W., Pask, C.: Light absorption in the bee photoreceptor. J. opt. Soc. Amer.62, 1267–1277 (1972)Google Scholar
  31. Sommer, E., Wehner, R.: The retina-lamina-projection in the visual system of the bee,Apis mellifera. Cell Tiss. Res.163, 45–61 (1975)Google Scholar
  32. Stark, W. S.: Spectral sensitivity of visual response alterations mediated by interconversions of native and intermediate photopigments inDrosophila. J. comp. Physiol.96, 343–356 (1975)Google Scholar
  33. Stockhammer, K.: Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z. vergl. Physiol.38, 30–83 (1956)Google Scholar
  34. Täuber, U.: Analyse des Polarisationszustandes des aus dem Rhabdomer austretenden Lichts. J. comp. Physiol.95, 169–183 (1974)Google Scholar
  35. Wehner, R.: Space constancy of the visual world in insects. Fortschr. Zool.23, 148–160 (1975)PubMedGoogle Scholar
  36. Wehner, R.: Structure and function of the peripheral visual pathway in Hymenopterans (in press)Google Scholar
  37. Weiler, R., Huber, M.: The significance of different eye regions for astromenotactic orientation inCataglyphis bicolor (Formicidae, Hymenoptera). In: Information processing in the visual systems of arthropods (ed. R. Wehner), p. 287–293. Berlin-Heidelberg-New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Rüdiger Wehner
    • 1
    • 2
  • Gary D. Bernard
    • 1
    • 2
  • Esther Geiger
    • 1
    • 2
  1. 1.Department of Zoology, Section of NeurobiologyUniversity of ZurichSwitzerland
  2. 2.Department of Ophthalmology and Visual ScienceYale Medical SchoolNew HavenUSA

Personalised recommendations