Skip to main content
Log in

Factors effecting the toxicity of nitrite nitrogen to tomatoes

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Experiments were done to study the effects of nitrite nitrogen on nutrient absorption and organic acid content of tomatoes (Keystone) grown in sand culture. The effects of root aeration, magnesium and iron supply on the symptoms of nitrite toxicity were also studied. Nutrient solutions were standardised to pH 4.5 and contained from 0–250 ppm nitrite nitrogen.

Increasing the concentration of nitrite nitrogen decreased dry matter yields, total acidity, the concentration of nitrogen, phosphorus and potassium in tomato plants, and increased the chlorosis of leaves and the lignification of roots.

Shortage of iron, magnesium, and poor root aeration caused toxicity symptoms to appear at a smaller concentration of nitrite nitrogen and increased the severity of the symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar Akiva, A. and Sternbaum, J., Non-enzymatic reduction of nitrite by means of ascorbic acid in citrus and other higher plant tissues. Physiol. Plant.19, 422 (1966).

    CAS  Google Scholar 

  2. Bingham, F. T., Chapman, H. D., and Pugh, A. L., Solution culture studies of nitrite toxicity in plants. Proc. Soil Sci. Soc. Am.18, 305 (1954).

    CAS  Google Scholar 

  3. Bitcover, E. H. and Wander, I. W., Some observations on nitrite formation. and the absorption of nitrogen by citrus. Plant Physiol. Lancaster25, 461 (1950).

    CAS  Google Scholar 

  4. Blaza, A. J., A study of the effect of nitrite nitrogen on plant growth. D.T.A. report, Univ. West Indies, Trinidad (1967).

    Google Scholar 

  5. Broadbent, F. E., Tyler, K. B., and Hill, G. N., Nitrification of ammoniacal fertilizers in some California soils. Hilgardia27, 247 (1957).

    CAS  Google Scholar 

  6. Chapman, H. D. and Liebig, G. F., Field and laboratory studies of nitrite accumulation in soils. Proc. Soil Sci. Am.16, 276 (1952).

    CAS  Google Scholar 

  7. Curtis, D. S., Nitrite injury on avocado and citrus seedlings in nutrient solutions. Soil Sci.68, 441 (1949).

    CAS  Google Scholar 

  8. De Kock, P. C., Iron nutrition of plants at high pH. Soil Sci.79, 167 (1955).

    Google Scholar 

  9. Delwiche, C. C., Symposium on inorganic nitrogen metabolism. Eds: McElroy and Glass, B., 233, Baltimore. John Hopkins Press (1956).

  10. Dikussar, I., Einfluss von nitriten auf das pflanzenwachstum im dunkeln und bei naturlicher beleuchtung. J. Landw., Wiss. Moskau2, 457 (1925).

    Google Scholar 

  11. Evans, H. J. and McAuliffe, C., Inorganic nitrogen metabolism. Baltimore (1956).

  12. Evans, H. J. and Nason, A., Pyridine nucleotide-nitrite reductase from extracts of higher plants. Plant Physiol. Lancaster28, 233 (1953).

    CAS  Google Scholar 

  13. Fedorov, M. V. and Pereverzeva, G. I., Inactivation of the enzyme carboxylase by nitrites in growing and dividing cells of Bact. lactis aerogenes. Biol. Sci. Sect. Transl.117 (1/6). 1035–1038 (1957).

    Google Scholar 

  14. Folkes, B. F., Willis, A. J., and Yemm, E. W., The respiration of barley plants. New Phytol.51, 317 (1952).

    Google Scholar 

  15. Fraps, G. S. and Sterges, A. J., Availability of nitrous nitrogen to plants. Tex. Agr. Expt. Sta. Bull.515 (1935).

  16. Hass, A. R. C., Nitrogen in relation to the growth of citrus cuttings in solution culture. Plant Physiol. Lancaster12, 163 (1937).

    Google Scholar 

  17. Iljin, W. S., Metabolism of plants affected with lime chlorosis, II. Pl. Soil3, 339 (1951).

    CAS  Google Scholar 

  18. Iljin, W. S., Metabolism of plants affected with lime chlorosis, III. P. Soil4, 11 (1952).

    CAS  Google Scholar 

  19. Martin, W. P., Buehrer, T. E., and Caster, A. B., Threshold pH values for the nitrification of ammonia in desert soils. Proc. Soil Sci. Soc. Am.7, 223 (1942).

    Google Scholar 

  20. McGeorge, W. T., Lime-induced chlorosis, relation between active iron, citric and oxalic acids. Soil Sci.68, 381 (1949).

    CAS  Google Scholar 

  21. Mevius, W. and Dikussar, I., Nitrites as a source of nitrogen for the higher plants. Jahrb. Wiss. Bot.73, 633 (1930).

    CAS  Google Scholar 

  22. Nicholas, D. J. D. and Goodman, T., The effect of deficiencies of zinc and iron on some enzyme systems in Neurospora. J. Expt. Bot.9, 97 (1958).

    CAS  Google Scholar 

  23. Nightingale, G. T., The nitrogen nutrition of green plants. Botan. Rev.3, 85 (1937).

    CAS  Google Scholar 

  24. Oke, O. L., Nitrite toxicity in plants. Nature, Lond.212, 528 (1966).

    CAS  Google Scholar 

  25. Paneque, A., Del Campo, E. F., and Losada, M., Nitrite reduction by isolated chloroplasts in the light. Nature, Lond.198, 90 (1963).

    CAS  Google Scholar 

  26. Paul, J. L. and Polle, E., Nitrite accumulation related to lettuce growth in a slightly alkaline soil. Soil Sci.100, 292 (1965).

    CAS  Google Scholar 

  27. Prianishnikov, D. N., Ammoniak, Nitrate und Nitrite als Stikstoffquellen fur hohere Pflanzen. Ergebn. Biol.1, 407 (1926).

    Google Scholar 

  28. Roads, W. A. and Wallace, A., Possible involvement of dark fixation of CO2 in lime induced chlorosis. Soil Sci.89, 248 (1960).

    Google Scholar 

  29. Sacks, L. and Barker, H. A., Influence of oxygen on nitrate and nitrite reduction. J. Bacteriol.58, 11 (1949).

    CAS  Google Scholar 

  30. Sanderson, G. W. and Cocking, E. C., Enzymatic assimilation of nitrate by tomato plants. Plant Physiol., Lancaster39, 423 (1964).

    CAS  Google Scholar 

  31. Vanecko, S. and Frear, D. S., A study of the metabolism of possible intermediates of nitrite reduction in higher plants. Plant Physiol. Lancaster30, XXVI (1955).

    Google Scholar 

  32. Vanecko, S. and Varner, J. E., Studies on nitrite metabolism in higher plants. Plant Physiol. Lancaster30, 388 (1955).

    CAS  Google Scholar 

  33. Wallace, T., The diagnosis of mineral deficiencies in plants by visual symptoms. (Ed. 3rd). London, H. M. Stationery Office (1961).

    Google Scholar 

  34. Willis, A. J. and Yemm, E. W., The respiration of barley plants. New Phytol.54, 163 (1955).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phipps, R.H., Cornforth, I.S. Factors effecting the toxicity of nitrite nitrogen to tomatoes. Plant Soil 33, 457–466 (1970). https://doi.org/10.1007/BF01378234

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01378234

Keywords

Navigation