Skip to main content
Log in

Determination of P status ofHevea brasiliensis by bark analysis

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

The several methods to determine the P status ofHevea Brasiliensis on tropical soils are reviewed. The matter is very complicated, as several P compounds are found in soils,i.e. organic P, acid soluble P, exchangeable P, alkali-soluble P and inert P. It was found that P analyses of Hevea barks can better represent the amount of available P in the soil than soil analyses. Bark analyses are, moreover, less markedly influenced by date of sampling than leaf analyses. This characteristic feature of P in barks of Hevea may be ascribed to the outstanding property of energy-rich phosphorylated compounds as agents in increasing the synthesis of caoutchouc particles from the daily assimilates and the carbohydrate reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslyng, H. C., The lime and phosphate potentials of soils; the solubility and availability of phosphates. Arsskrift Den. Kgl. Vet. og Landbohøgskole7, 1–50 (1954).

    Google Scholar 

  2. Baudisch, O., Biological function of minor elements. Soil Sci.60, 173–184 (1945).

    Google Scholar 

  3. Beaufils, E. R., Recherches sur la variation des constituants minéraux dans les feuilles et le latex de l'Hevea brasiliensis. Rev. Gén. Caoutchouc32, 323–331 (1955).

    Google Scholar 

  4. Bertramson, B. R. and Stephenson, R. E., Comparative efficiency of organic phosphorus and of superphosphate in the nutrition of plants. Soil Sci.53, 215–227 (1942).

    Google Scholar 

  5. Black, C. A., The penetration of phosphate into the kaolinite crystal. Soil Sci. Soc. Am. Proc.6 (1941), 157–161 (1942).

    Google Scholar 

  6. Bolle-Jones, E. W., Effect of nutritional deficiencies on growth, chlorophyll, rubber and mineral contents of Tjirandji seedlings. J. Rubber Research Inst. Malaya14, 209–230 (1954).

    Google Scholar 

  7. Bolle-Jones, E. W., The interrelationships of magnesium, potassium and phosphorus. J. Rubber Research Inst. Malaya14, 231–256 (1954).

    Google Scholar 

  8. Bolle-Jones, E. W. and Ratnasingam, K., Interclonal and seasonal variations in composition of leaves. J. Rubber Research Inst. Malaya14, 257–275 (1954).

    Google Scholar 

  9. Bolle-Jones, E. W., Foliar diagnosis and bark analysis of Hevea. J. Rubber Research Inst. Malaya15, 109–127 (1957).

    Google Scholar 

  10. Bower, C. A., Separation and identification of phytin and its derivatives from soils. Soil Sci.59, 277–285 (1945).

    Google Scholar 

  11. Bower, C. A., Studies on the form and availability of soil organic phosphorus. Iowa Agr. Expt. Sta. Research Bull.362 (1949).

  12. Bray, R. H. and Dickman, S. R., Adsorbed phosphates in soils and their relation to crop responses. Soil Sci. Soc. Am. Proc.6, 312–320 (1942).

    Google Scholar 

  13. Bray, R. H. and Kurtz, L. T., Determination of total organic and available forms of phosphorus in soils. Soil Sci.59, 39–45 (1945).

    Google Scholar 

  14. Buehrer, T. F., The physico-chemical relationships of soil phosphates. Ariz. Agr. Expt. Sta. Tech. Bull.42, 154–212 (1932).

    Google Scholar 

  15. Chaminade, R., Les formes du phosphore dans le sol: Nature et rôle des complexes phospho-humiques. Ann. Agron.14, 1–53 (1944).

    Google Scholar 

  16. Chapman, G. W., Leaf analyses and plant nutrition. Soil Sci.52, 63–81 (1941).

    Google Scholar 

  17. Compagnon, P. and Tixier, P., Sur une possibilité d'améliorer la production d'Hevea brasiliensis par l'apport d'oligo-éléments. Rev. Gén. Caoutchouc27, 525–526, 591–594, 663–665 (1950).

    Google Scholar 

  18. Compagnon, P. and Beaufils, E. R., Sur l'activité du cuivre en tout qu'oligoélément dans l'assimilation minérale de l'Hevea. Compt. Rend.240, 1493–1495 (1955).

    Google Scholar 

  19. De Haan, I., Deficiency symptoms in Hevea Brasiliensis. Arch. Rubbercult. Ned. Indië27, 107–137 (1950).

    Google Scholar 

  20. De Jonge, P., Further observations on the effect of yield stimulants. J. Rubber Research Inst. Malaya14, 383–406 (1955).

    Google Scholar 

  21. Dickman, I. R. and Bray, R. H., Replacement of adsorbed phosphate from kaolinite by fluoride. Soil Sci.52, 263–273 (1941).

    Google Scholar 

  22. Eid, M. T., Black, C. A., and Kempthorne, O., Importance of soil organic phosphorus to plant growth at low and high soil temperatures. Soil Sci.71, 361–370 (1951).

    Google Scholar 

  23. Haehn, H. and Schweigart, H. A., Potato amylase separation into neutral salts and anorganic components. Biochem. Z.143, 516–526 (1923).

    Google Scholar 

  24. Kalcker, H. M., The nature of energetic coupling in biological synthesis. Chem. Rev.28, 71–78 (1941).

    Google Scholar 

  25. Kelly, J. B. and Midglay, A. R., Phosphate fixation — an exchange of phosphate and hydroxyl ions. Soil Sci.55, 167–176 (1943).

    Google Scholar 

  26. Lipman, F., Metabolic generation and utilization of phosphate bond energy. Advances in Enzymol.1, 99–162 (1941).

    Google Scholar 

  27. Low, P. F. and Black, C. A., Phosphate induced decomposition of kaolinite. Soil Sci. Soc. Am. Proc.12, 180–184 (1948).

    Google Scholar 

  28. Marel, H. W. van der, Cation and anion adsorption of tropical and Dutch soils. Thesis Agr. Univ. Wageningen (1935).

  29. Marel, H. W. van der, Organic phosphorus in soils. Landbouwk. Tijdschr.47, 85–88 (1935).

    Google Scholar 

  30. Marel, H. W. van der, Phosphate fixation in soils. Landbouwk. Tijdschr.48, 496–503 (1936).

    Google Scholar 

  31. Marel, H. W. van der, Tropical soils in relation to plant nutrition. Soil Sci.64, 445–451 (1947).

    Google Scholar 

  32. Marel, H. W. van der, Humus as a regulator of water and nitrogen status of tropical soils. Landbouwk. Tijdschr.60, 115–120 (1948).

    Google Scholar 

  33. Neubauer, E., Versuche nach der Keimpflanzenmethode über den Unterschied der Aufnehmbarkeit anorganischer- und organischer Phosphatformen. Landwirtsch. Vers. Sta.114, 225–294 (1933).

    Google Scholar 

  34. Owen, G., Determination of available nutrients in Malayan soils. J. Rubber Research Inst. Malaya14, 109–120 (1953).

    Google Scholar 

  35. Owen, G., Studies on the phosphate problem in Malayan soils. J. Rubber Research Inst. Malaya14, 121–132 (1953).

    Google Scholar 

  36. Paul, H., Some observations on the mechanism of phosphorus fixation in some soils of British Guiana. J. Agr. Sci.39, 249–253 (1949).

    Google Scholar 

  37. Philpott, M. W. and Westgarth, D. R., Stability and mineral composition of Hevea latex. J. Rubber Research Inst. Malaya14, 133–148 (1953).

    Google Scholar 

  38. Picci, G., Die Mineralisation von organischen Phosphor durch Microben referated in Chem. Zentr. 1954, vol. 125, no 5157 (1954).

  39. Pierre, W. H., The phosphorus cycle and soil fertility. J. Am. Soc. Agron.40, 1–14 (1948).

    Google Scholar 

  40. Potter, R. S. and Benton, T. H., The organic phosphorus of soil. Soil Sci.2, 291–298 (1916).

    Google Scholar 

  41. Rhines, C. E., McGavack, J., and Linke, C. J., Mineral nutrition of Hevea brasiliensis. Rubber Age N.Y.70, 467–474 (1951).

    Google Scholar 

  42. Scheffer, F. and Schulz, H. G., Darstellungsbedingungen und Eigenschaften einiger Eisenphosphate: Ein Beitrag zur Phosphatfestlegung im Boden. Z. Pflanzenern. Düng. u. Bodenk.70, 141–164 (1955).

    Google Scholar 

  43. Schmoeger, M., Untersuchen über einige Bestandteile des Moores. Landwirtsch. Jahrb.25, 1025–1050 (1896).

    Google Scholar 

  44. Schollenberger, C. J., Organic phosphorus of soil: Experimental work on methods for extraction and determination. Soil Sci.6, 365–395 (1918).

    Google Scholar 

  45. Schweigart, H. A., Integrierende Spurenelemente in biologischen Systemen. Z. Pflanzenern. Düng. u. Bodenk.54, 36–58 (1951).

    Google Scholar 

  46. Stoklasa, J., Biochemischer Kreislauf des Phosphations im Boden. Centr. Bakteriol. Parasitenk. Abt. II29, 358–519 (1911).

    Google Scholar 

  47. Stout, P. R., Alterations in the crystal structure of clay minerals as a result of phosphate fixation. Soil Sci. Soc. Am. Proc.4, 177–183 (1940).

    Google Scholar 

  48. Toth, S. J., Anion adsorption by soil colloids in relation to changes in free iron oxides. Soil Sci.44, 299–314 (1937).

    Google Scholar 

  49. Turner, R. C. and Rice, H. M., Role of the fluoride ion in release of phosphate adsorbed by aluminium and iron hydroxides. Soil Sci.72, 141–148 (1952).

    Google Scholar 

  50. Ulrich, B. and Benzler, J. H., Der organisch gebundene Phosphor im Boden. Z. Pflanzenern. Düng. u. Bodenk.70, 220–249 (1955).

    Google Scholar 

  51. Webster, G. C., Nitrogen metabolism. Ann. Rev. Plant Physiol.6, 43–70 (1955).

    Google Scholar 

  52. Weiss, A., Mehler, A., Koch, G., and Hofmann, U. Über das Anionen Austauschvermögen der Tonmineralien. Z. Anorg. u. Allgem. Chem.284, 247–271 (1956).

    Google Scholar 

  53. White, J. Th. and Hardon, H. J., Potproeven met inheemsch natuurlijk aluminiumphosphaat als meststof. Korte Meded. Proefst. Landbouw, Buitenzorg, Ned. Indiëno 5 (1935).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Marel, H.W. Determination of P status ofHevea brasiliensis by bark analysis. Plant Soil 12, 5–16 (1960). https://doi.org/10.1007/BF01377756

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01377756

Keywords

Navigation