Skip to main content

Ray shooting in polygons using geodesic triangulations

Abstract

LetP be a simple polygon withn vertices. We present a simple decomposition scheme that partitions the interior ofP intoO(n) so-called geodesic triangles, so that any line segment interior toP crosses at most 2 logn of these triangles. This decomposition can be used to preprocessP in a very simple manner, so that any ray-shooting query can be answered in timeO(logn). The data structure requiresO(n) storage andO(n logn) preprocessing time. By using more sophisticated techniques, we can reduce the preprocessing time toO(n). We also extend our general technique to the case of ray shooting amidstk polygonal obstacles with a total ofn edges, so that a query can be answered inO(√ logn) time.

This is a preview of subscription content, access via your institution.

References

  1. P. Agarwal, Ray shooting and other applications of spanning trees with low stabbing number,Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 315–325.

  2. B. Chazelle, A theorem on polygon cutting with applications,Proc. 23rd IEEE Symp. on Foundations of Computer Science, 1982, pp. 339–349.

  3. B. Chazelle, Triangulating a simple polygon in linear time,Discrete Comput. Geom.,6 (1991), 485–524.

    Google Scholar 

  4. B. Chazelle, H. Edelsbrunner, and L. Guibas, The complexity of cutting complexes,Discrete Comput. Geom.,4 (1989), 139–181.

    Google Scholar 

  5. B. Chazelle and L. Guibas, Fractional cascading: I. A data structuring technique,Algorithmica,1 (1986), 133–162.

    Google Scholar 

  6. B. Chazelle and L. Guibas, Fractional cascading: II. Applications,Algorithmica,1 (1986), 163–191.

    Google Scholar 

  7. B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry.Discrete Comput. Geom.,4 (1989), 551–581.

    Google Scholar 

  8. D. Dobkin and D. Kirkpatrick, Fast detection of polyhedral intersection,Theoret. Comput. Sci.,27 (1983), 241–253.

    Google Scholar 

  9. H. Edelsbrunner, L. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,SIAM J. Comput.,15 (1986), 317–340.

    Google Scholar 

  10. H. ElGindy and D. Avis, A linear algorithm for computing the visibility polygon from a point,J. Algorithms,2 (1981), 186–197.

    Google Scholar 

  11. L. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon,J. Comput. System Sci.,39 (1989), 126–152.

    Google Scholar 

  12. L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons,Algorithmica,2 (1987), 209–233.

    Google Scholar 

  13. L. Guibas, J. Hershberger, and J. Snoeyink, Compact interval trees: a data structure for convex hulls,Internat. J. Comput. Geom. Appl.,1 (1991), 1–22.

    Google Scholar 

  14. D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors,SIAM J. Comput.,13 (1984), 338–355.

    Google Scholar 

  15. J. Hershberger, A new data structure for shortest path queries in a simple polygon,Inform. Process. Lett,38 (1991), 231–235.

    Google Scholar 

  16. D. Kirkpatrick, Optimal search in planar subdivisions,SIAM J. Comput.,12 (1983), 28–35.

    Google Scholar 

  17. D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers,Networks,14 (1984), 393–410.

    Google Scholar 

  18. J. Matoušek, More on cutting arrangements and spanning trees with low stabbing number, Technical Report B-90-2, Freie Universität Berlin, February 1990.

  19. K. Mehlhorn,Data Structures and Algorithms, I: Sorting and Searching, Springer-Verlag, Heidelberg, 1984.

    Google Scholar 

  20. M. Overmars and J. van Leeuwen, Maintenance of configurations in the plane,J. Comput. System Sci.,23 (1981), 166–204.

    Google Scholar 

  21. F. Preparata and M. Shamos,Computational Geometry: An Introduction, Springer-Verlag, Heidelberg, 1985.

    Google Scholar 

  22. B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification and parallelization,Proc. Third Aegean Workshop on Computing, pp. 111–123, Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, Berlin, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Kurt Mehlhorn.

Work by Bernard Chazelle has been supported by NSF Grant CCR-87-00917. Work by Herbert Edelsbrunner has been supported by NSF Grant CCR-89-21421. Work by Micha Sharir has been supported by ONR Grants N00014-89-J-3042 and N00014-90-J-1284, by NSF Grant CCR-89-01484, and by grants from the U.S.-Israeli Binational Science Foundation, the Fund for Basic Research administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chazelle, B., Edelsbrunner, H., Grigni, M. et al. Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994). https://doi.org/10.1007/BF01377183

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01377183

Key words

  • Computational geometry
  • Ray-shooting
  • Triangulation