Skip to main content
Log in

Lubrication of rollers by power law fluids considering consistency-variation with pressure and temperature

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The steady state lubrication of two rigid cylindrical rollers under entraining and squeezing motion including cavitation is studied. The lubricant consistencym of the power law fluid is assumed to be pressure and temperature dependent. A numerical solution to the coupled Reynolds' and energy equation for pressure and temperature has been obtained using higher order predictor corrector method. Also several other bearing characteristics such as load, traction ratios, maximum pressure, location of pressure maximum, temperature ratios etc. are calculated and discussed in detail for different values of the power law index including the Newtonian fluid behaviour. A comparison of the present results with those under isothermal condition is also made. It is concluded that the effect of temperature is to shift the position of the pressure peak slightly away from the center line of contact, whereas the trend is opposite for the cavitation points. The variation in consistency is found to be very significant, especially in the pressure peak region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

specific heat

c n :

\(\left( {\frac{{4n + 2}}{n}} \right)^n \left( {\frac{U}{{h_0 }}} \right)^n \left( {\frac{{2R}}{{h_0 }}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}\)

F :

X 2-X 1 2+ 2q(X+X 1)

G :

−F

H :

1+X 2

h :

film thickness

h 0 :

minimum film thickness

h 1 :

film thickness at maximum pressure

K :

thermal conductivity of the lubricant

m :

consistency of the fluid

m 0 :

consistency at ambient pressure and temperature

\(\bar m\) :

non-dimensional consistency (=2mc n α)

\(\bar m_0\) :

2m o c n α

n :

flow behaviour index

p :

hydrodynamic pressure

\(\bar p\) :

non-dimensional pressure (=αp)

\(\bar p_{\max }\) :

maximum pressure

\(\bar p_{\max R}\) :

maximum pressure ratio

q :

velocity ratio parameter\(\left( {\frac{V}{U}\left( {\frac{R}{{2h_0 }}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)\)

R :

equivalent radius

r :

radius of the cylinder

S :

1+X 1 2-2q(X+X 1)

T :

temperature

T 0 :

ambient temperature

\(\bar T\) :

β(T-T 0)

U :

rolling speed of cylinder

u :

velocity of lubricant inx-direction

V :

normal velocity of cylinder

v :

velocity of lubricant imy-direction

v h :

velocity aty=h/2

X :

x/(2Rh 0)1/2

X 1 :

x 1 2Rh 0 1/2

X 2 :

x 2 2Rh 0 1/2

x, y :

coordinate axes

W x +,W y + :

load components inx andy-directions, respectively

W x ,W y :

non-dimensional load components inx andy-directions respectively

\(\bar W_x ,\bar W_y\) :

load ratio components inx andy-directions respectively

\(\bar W_{Y_i }\) :

isothermal load ratio

T F :

traction force

\(\bar T_F\) :

non-dimensional traction,TF/(h 0/2α)

\(\bar T_{FR}\) :

traction ratio,\(\bar T_F (q \ne 0)/\bar T_F (q = 0)\)

\(\bar T_{FR_i }\) :

isothermal traction ratio

α:

pressure coefficient, Eq. (4)

β:

temperature coefficient, Eq. (4)

γ:

β(ϱcα)

ϱ:

density of the lubricant

References

  1. Boncompain, R., Fillon, M., Frene, J.: Analysis of thermal effects in hydrodynamic bearings. J. Lub. Technol.108, 219–224 (1986).

    Google Scholar 

  2. Dowson, D., Taylor, C. M., Godet, M., Berthe, D.: THD analysis of finite journal bearing static and dynamic characteristics. In: Proc. of the 6th Leeds-Lyon Symposium on Tribology, Thermal Effects in Tribology (Dowson, D., et al., eds.), pp. 33–41. London: Mech. Engr. Pub. Ltd. 1980.

    Google Scholar 

  3. Dowson, D., Markho, P. H., Jones, D. A.: The lubrication of lightly loaded cylinders in combined rolling, sliding and normal motion. Part I. Theory. J. Lub. Tech.98, 509–516 (1976).

    Google Scholar 

  4. Markho, P. H., Dowson, D.: The tubrication of lightly loaded cylinders in combined rolling, sliding, and normal motion. J. Lubr. Tech.98, 517–522 (1976).

    Google Scholar 

  5. Sasaki, T., Mori, H., Okino, N.: Fluid lubrication theory of roller bearings. ASME J. Basic Eng.84, 166–174 (1962).

    Google Scholar 

  6. Archard, G. D., Gair, F. C., Hirst, W.: The EHD lubrication of rollers. Proc. R. Soc. London Ser.A 262, 51–65 (1961).

    Google Scholar 

  7. Crook, A. W.: The lubrication of rollers III. A theoretical discussion of friction and the temperatures in the oil film. Phil. Trans. R. Soc. London Ser.A 254, 237–258 (1961).

    Google Scholar 

  8. Cheng, H. S., Sternlicht, B.: A humerical solution for pressure, temperature and film thickness between two infinitely long lubricated rolling and sliding cylinders under heavy loads. J. Basic Eng.87, 695–707 (1965).

    Google Scholar 

  9. Johnson, K. L., Greenwood, J. A.: Thermal analysis of an Eyring fluid in EHD traction. Wear61, 353–374 (1980).

    Google Scholar 

  10. Prasad, D., Singh, P., Sinha, P.: Nonuniform temperature in non-Newtonian compressible fluid film lubrication of rollers. J. Tribology110, 653–658 (1988).

    Google Scholar 

  11. Kannel, J. W., Dow, T. A.: The relation between pressure and temperature in rolling-sliding EHD contact. Trans. ASLE23, 262–268 (1980).

    Google Scholar 

  12. Tonnesen, J., Hansen, P. K.: Some experiment on the steady state characteristics of a cylindrical fluid film bearing considering thermal effects. AMSE J. Lub. Tech.103, 107–114 (1981).

    Google Scholar 

  13. Cann, P. M., Spikes, H. A.: Determination of the shear stress of lubricants in EHD contacts. Trib. Trans.32, 414–422 (1989).

    Google Scholar 

  14. Rohde, S. M., Ezzat, H. A.: A study of thermohydrodynamic squeeze films. J. Lub. Tech.96, 198–205 (1974).

    Google Scholar 

  15. Prasad, D., Singh, P., Sinha, P.: Thermal and squeezing effects in non-Newtonian fluid film lubrication or rollers. Wear119, 175–190 (1987).

    Google Scholar 

  16. Prasad, D., Chhabra, R. P.: Thermal and normal squeezing effects in lubrication of rollers by a power law fluid. Wear145, 61–76 (1991).

    Google Scholar 

  17. Cheng, H. S.: A refined solution to the thermal EHD lubrication of rolling and sliding cylinders. ASLE8, 379–410 (1965).

    Google Scholar 

  18. Kannel, J. W., Walowit, J. A.: Simplified analysis from traction between rolling sliding EHD contacts. J. Lub. Tech93, 39–46 (1971).

    Google Scholar 

  19. Sinha, P., Singh, C.: Lubrication of a cylinder on a plane with non-Newtonian fluid considering cavitation. J. Lub. Tech.104, 168–172 (1982).

    Google Scholar 

  20. Conry, T. F.: Thermal effects on traction in EHD lubrication. J. Lub. Tech.105, 533–538 (1981).

    Google Scholar 

  21. Dein, I. K., Elrod, H. G.: A generalized steady-state Reynolds equation for non-Newtonian fluids with application to journal bearings. J. Lub. Tech.105, 385–390 (1983).

    Google Scholar 

  22. Wang, S. H., Zhang, H. H.: Combined effects of thermal and non-Newtonian character of lubricant on pressure, film profile, temperature rise, and shear stress in EHL. J. Trib.109, 666–670 (1987).

    Google Scholar 

  23. Prasad, D., Shukla, J. B., Singh, P., Sinha, P., Chhabra, R. P.: Thermal effects in lubrication of asymmetrical rollers. Trib. Int.24, 239–246 (1991).

    Google Scholar 

  24. Houpert, L.: Fast numerical calculations of EHD sliding traction forces. An application to roller bearings. J. Trib.107, 234–240 (1985).

    Google Scholar 

  25. Bourgin, P.: Fluid film flows of differential fluids of complexityn-dimensional approach — applications to lubrication theory. J. Lub. Tech.101, 140–144 (1979).

    Google Scholar 

  26. Conry, T. F., Wang, S., Cusano, C.: A reynolds-Eyring equation for EHD lubrication in line contacts. J. Trib.109, 648–658 (1987).

    Google Scholar 

  27. Dyson, A., Wilson, A. R.: Film thickness in EHD lubrication by silicon fluids. Proc. Inst. Mech. Eng.180, 97–112 (1965).

    Google Scholar 

  28. Griskey, R. G., Green, R. G.: Flow of dilatant (shear-thickening) fluids. AIChE J.17, 725–728 (1971).

    Google Scholar 

  29. Markho, P. H.: A study of the lubrication and dynamics of cylindrical rollers. Ph. D. thesis, The University of Leeds 1972.

  30. Lee, R., Hamrock, B. J.: Squeeze and entraining motion in nonconformal line contacts. Part I — hydrodynamic lubrication. J. Trib.111, 1–7 (1989).

    Google Scholar 

  31. Conry, T. F.: An analytical solution for the normal load carrying capacity of lightly loaded cylinders in combined rolling, sliding and normal motion. J. Lub. Tech.103, 467–470 (1981).

    Google Scholar 

  32. Murch, L. E.: A thermal EHD zone analysis. J. Lub. Tech.97, 212–216 (1975).

    Google Scholar 

  33. Sinha, P., Shukla, J. B., Prasad, K. R., Singh, C.: Non-Newtonian power law fluid lubrication of lightly loaded cylinders with normal and rolling motion. Wear89, 313–322 (1983).

    Google Scholar 

  34. Ghose, M. K., Hamrock, B. K.: Thermal EHD lubrication of line contacts. ASLE Trans.28, 159–171 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Subscripts 1 and 2 refer to inlet and outlet zones in case of pressure, temperature, and consistency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, P., Prasad, D. Lubrication of rollers by power law fluids considering consistency-variation with pressure and temperature. Acta Mechanica 111, 223–239 (1995). https://doi.org/10.1007/BF01376932

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01376932

Keywords

Navigation