Skip to main content
Log in

The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The flow of a viscous incompressible fluid in the gap between two concentric spheres was investigated for the case where only the inner sphere rotates and the outer one is stationary. Flow visualization studies were carried out for a wide range of Reynolds numbers (Re≦2·105) and aspect ratios (0.08≦β≦0.5) to determine the instabilities during the laminar-turbulent transition and the corresponding critical Reynolds numbers as a function of the aspect ratio. It was found that the laminar basic flow loses its stability at the stability threshold in different ways. The instabilities occurring depend strongly on the aspect ratio and the initial conditions. For small and medium aspect ratios (0.08≦β≦0.25), experiments were carried out as a function of the Reynolds number to determine the regions of existence for basic flow, Taylor vortex flow, supercritical basic flow and furthermore, to give the best fit for the maximum number of pairs of Taylor vortices as a function of aspect ratio. For wide gaps (0.33≦β≦0.5), however, Taylor vortices could not be detected. The first instability manifests itself as a break of the spatial symmetry and non-axisymmetric secondary waves with spiral arms appear depending on the Reynolds number. For β=0.33, secondary waves with an azimuthal wave numbern=six, five and four were found, while in the gap with an aspect ratio of β=0.5 secondary waves withn=five, four and three spiral arms exist. Frequencies of these secondary waves were measured, the corresponding critical Reynolds numbers and the transition Reynolds numbers during the transition to turbulence were found. The flow modes occurring at the poles look very similar to those found in the flow between two rotating disks. Effects of non-uniqueness and hysteresis were determined as a function of the acceleration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahamson, S. D., Eaton, J. K., Koga, D. J.: The flow between shrouded corotating disks. Phys. FluidsA 1, 241–251 (1989).

    Google Scholar 

  2. Bar-Yoseph, P., Solan, A., Hillen, R., Roesner, K. G.: Taylor vortex flow between eccentric coaxialrotating spheres. Phys. FluidsA 2, 1564–1573 (1990).

    Google Scholar 

  3. Bar-Yoseph, P., Roesner, K. G., Solan, A.: Vortex breakdown in the polar region between rotating spheres. Phys. FluidsA 4, 1677–1686 (1992).

    Google Scholar 

  4. Bartels, F.: Taylor vortices between two concentric rotating spheres. J. Fluid Mech.119, 1 (1982).

    Google Scholar 

  5. Bartels, F., Krause, E.: Taylor-vortices in spherical gaps. In: Laminar-turbulent transition IUTAM-Symp. Stuttgart. Berlin Heidelberg New York: Springer 1979.

    Google Scholar 

  6. Belyaev, Yu. N., Monakhov, A. A., Scherbakov, S. A., Yavorskaya, I. M.: Some routes to turbulence in spherical Couette flow. In: Laminar-turbulent transition (Kozlov, V. V., ed.), IUTAM-Symp. Novosibirsk/USSR. Berlin Heidelberg New York Tokyo: Springer 1984.

    Google Scholar 

  7. Bonnet, J. P., Alziary de Roquefort, T.: Ecoulement entre deux spheres concentriques en rotation. J. Mec.13, 373 (1976).

    Google Scholar 

  8. Bratukhin, Yu. K.: On the evaluation of the critical Reynolds number for the flow of fluid between two rotating spherical surfaces. PMM25, 858–866 (1961).

    Google Scholar 

  9. Bühler, K.: Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. VDI-Berichte, Reihe 7: Strömungstechnik Nr. 96 (1985).

  10. Bühler, K., Zierep, J.: New secondary instabilities for high Re-number flow between two rotating spheres. In: Laminar-turbulent transition (Kozlov, V. V., ed.). IUTAM-Symp. Novosibirsk/USSR. Berlin Heidelberg New York Tokyo: Springer 1984.

    Google Scholar 

  11. Dennis, S. C. R., Quartapelle, L.: Finite difference solution to the flow between two rotating spheres. Comp. Fluids12, 77 (1984).

    Google Scholar 

  12. Khlebutin, G. N.: Stability of fluid motion between a rotating and a stationary concentric sphere. Fluid Dyn.3, 31–32 (1968).

    Google Scholar 

  13. Markus, P. S., Tuckerman, L. S.: Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech.185, 1–30 (1987).

    Google Scholar 

  14. Markus, P. S., Tuckerman, L. S.: Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech.185, 31–65 (1987).

    Google Scholar 

  15. Munson, B. R., Joseph, D. D.: Viscous incompressible flow between concentric rotating spheres. Part 1: Basic flow. J. Fluid Mech.49, 289–303 (1971).

    Google Scholar 

  16. Munson, B. R., Joseph, D. D.: Viscous incompressible flow between concentric rotating spheres. Part 2: Hydrodynamic stability. J. Fluid Mech.49, 305–318 (1971).

    Google Scholar 

  17. Munson, B. R., Menguturk, M.: Viscous incompressible flow between concentric rotating spheres. Part 3: Linear stability and experiments. J. Fluid Mech.69, 705–719 (1975).

    Google Scholar 

  18. Nakabayashi, K.: Transition of Taylor-Görtler vortex flow in spherical Couette flow. J. Fluid Mech.132, 209–230 (1983).

    Google Scholar 

  19. Sawatzki, O., Zierep, J.: Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, von denen die innere rotiert. Acta Mech.9, 13–35 (1970).

    Google Scholar 

  20. Schrauf, G.: The first instability in spherical Taylor-Couette flow. J. Fluid Mech.166, 287–303 (1986).

    Google Scholar 

  21. Sorokin, M. P., Khlebutin, G. N., Shaidurov, G. F.: Study of the motion of a liquid between two rotating spherical surfaces. J. Appl. Mech. Tech. Phys.6, 73–74 (1966).

    Google Scholar 

  22. Taylor, G. J.: Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Sec. London Ser.A 223, 289–293 (1923).

    Google Scholar 

  23. Waked, A. M., Munson, B. R.: Laminar-turbulent flow in spherical annulus. Trans. ASME I, J. Fluids Eng.100, 281 (1978).

    Google Scholar 

  24. Wimmer, M.: Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech.78, 317–335 (1976).

    Google Scholar 

  25. Wimmer, M.: Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech.103, 117–131 (1981).

    Google Scholar 

  26. Yakushin, V. I.: Instability of the motion of a liquid between two rotating spherical surfaces. Fluid Dyn.5, 660–661 (1970).

    Google Scholar 

  27. Yavorskaya, I. M., Belyaev, Yu. N., Monakhov, A. A.: Experimental study of a spherical Couette flow. Sov. Phys. Dokl.20, 256–258 (1975).

    Google Scholar 

  28. Yavorskaya, I. M., Astaf'eva, N. M.: Numerical analysis of the stability and non-uniqueness of spherical Couette flow. GAMM-Conf. Num. Meth. Fluid Mech. Proc.3, 305 (1979).

    Google Scholar 

  29. Yavorskaya, I. M., Belyaev, Yu. N., Monakhov, A. A., Astaf'eva, N. M., Scherbakov, S. A., Vvedenskaya, N. D.: Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. Proc. XV-IUTAM-Symposium, Toronto 1980.

  30. Yavorskaya, I. M., Fomina, N. I., Belyaev, Yu. N.: A simulation of central-symmetry convection in microgravity conditions. Acta Astron.11, 179–183 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egbers, C., Rath, H.J. The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mechanica 111, 125–140 (1995). https://doi.org/10.1007/BF01376924

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01376924

Keywords

Navigation