Skip to main content
Log in

Doubly averaged effect of the Moon and Sun on a high altitude Earth satellite orbit

  • Published:
Celestial mechanics Aims and scope Submit manuscript

Abstract

Infinite series expansions are obtained for the doubly averaged effects of the Moon and Sun on a high altitude Earth satellite, and the results used to interpret numerically integrated examples. New in this paper are: (1) both sublunar and translunar satellites are considered; (2) analytic expansions include all powers in the satellite and perturbing body semi-major axes; (3) the fact that retrograde orbits have more benign eccentricity behavior than direct orbits should be exploited for high altitude satellite systems; and (4) near circular orbits can be maintained with small expenditures of fuel in the face of an exponential driving force one forI a<I<Ib, whereI b=180°−I a andI a is somewhat less than 39.2° for sublunar orbits and somewhat greater than 39.2° for translunar orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

semi-major axis

A lk :

coefficient defined in Equation (11)

B lk :

coefficient defined in Equation (24)

C km :

coefficient defined in Equation (25)

D, E, F :

coefficients in Equations (38), (39)

e :

eccentricity

H k :

expression defined in Equation (34)

\(\bar H_t \) :

expression defined in Equation (35)

I :

inclination of satellite orbit on lunar (or solar) ring plane

J 2 :

coefficient of second harmonic of Earth's gravitational potential (1082.637×10−6 R 2E )

K k, Lk, Mk :

expressions in Section 4

\(\bar K_l , \bar L_l , \bar M_l \) :

expressions in Section 4

p=a(1−e 2):

semi-latus rectum

P l :

Legendre polynomial of degreel

q :

argument of Legendre polynomial

\(r = \frac{p}{{1 + e\cos \psi }}\) :

radial distance of satellite

R E :

Earth equatorial radius (6378.16 km)

R, S, W :

perturbing accelerations in the radial, tangential and orbit normal directions

syn:

synchronous orbit radius (42 164.2 km=6.6107R E)

t :

time

T :

satellite orbital period

T′:

orbital period of perturbing body (Moon)

T e :

period of long periodic oscillations ine for |I|<I a

T s :

synodic period

U :

gravitational potential of lunar (or solar) ring

x, y, z :

Cartesian coordinates of a satellite with (x, y) being the ring plane

γ:

coefficient defined in Equation (20)

Δβ:

average change in orbital element β over one orbit (β=a, e, I, Ω, ω)

ɛ12ɛ3 :

unit vectors in thex, y, z coordinate directions

ɛ r s w :

unit vectors in the radial, tangential and orbit normal directions

η=ω+ψ:

angle along the orbital plane from the ascending node on the ring plane to the true position of the satellite

θ:

angle around the ring

μ:

gravitational constant times mass of Earth (3.986 013×105 km s−2)

μ′:

gravitational constant times mass of Moon (or Sun)

μ m :

gravitational constant times mass of Moon (μ/81.301)

μ s :

gravitational constant time mass of Sun (332 946 μ)

π:

ratio of the circumference of a circle to its diameter

ϱ:

radius of lunar (or solar) ring

ϱ m :

radius of lunar ring (60.2665R E)

ϱ s :

radius of solar ring (23455R E)

ψ:

true anomaly

ω:

argument of perigee

ω0 :

initial value of ω

μ i :

critical value of ω in quadranti(i=1, 2, 3, 4)

Ω:

longitude of ascending node on ring plane

References

  • Ash, M. E.: 1974, Lincoln Laboratory, M.I.T., Technical Note 1974-5.

  • Cook, G. E.: 1962,Geophys. J. Roy. Astron. Soc. 6, 271.

    Google Scholar 

  • Gradsheteyn, I. S. and Ryzhik, I. M.: 1975,Tables of Integrals, Series and Products, Academic Press, New York and London, pp. 152–153.

    Google Scholar 

  • Kozai, Y.: 1959, Smithsonian Astrophysical Observatory Special Report No. 22.

  • Lidov, M. L.: 1962a,Planet. Space Sci. 9, 719.

    Google Scholar 

  • Lidov, M. L.: 1962b, in M. Roy (ed.),International Symposium on the Dynamics of Satellites (Paris), Springer, Berlin, p. 168.

    Google Scholar 

  • Lorell, J.: 1965,J. Astronaut. Sci. 12, 142.

    Google Scholar 

  • Lorell, J.: 1966, Jet Propulsion Laboratory, CIT, Technical Memorandum 33-287.

  • Musen, P., Bailie, A., and Upton, E.: 1961, NASA Goddard Spaceflight Center Technical Note D-494.

  • Shapiro, I. I.: 1962, in M. Roy (ed.),International Symposium on the Dynamics of Satellites (Paris), Springer, Berlin, p. 257.

    Google Scholar 

  • Smart, W. M.: 1953,Celestial Mechanics, Longmans, Green and Co., London, p. 218.

    Google Scholar 

  • Walker, J. G.: 1970, Royal Aircraft Establishment Technical Report 70211.

  • Walker, J. G.: 1971,J. Brit. Interplanet. Soc. 24, 369.

    Google Scholar 

  • Walker, J. G.: 1973, IEE Satellite Systems for Mobile Communications Conference, Paper No. 95.

  • Williams, J. G. and Benson, G. S.: 1971,Astron. J. 76, 167

    Google Scholar 

  • Williams, R. R. and Lorell, J.: 1966, Jet Propulsion Laboratory CIT, Technical Report 32-916.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was sponsored by the Department of the Air Force.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ash, M.E. Doubly averaged effect of the Moon and Sun on a high altitude Earth satellite orbit. Celestial Mechanics 14, 209–238 (1976). https://doi.org/10.1007/BF01376321

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01376321

Keywords

Navigation