Skip to main content
Log in

The chromatic number of random graphs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Let χ(G(n, p)) denote the chromatic number of the random graphG(n, p). We prove that there exists a constantd 0 such that fornp(n)>d 0,p(n)→0, the probability that

$$\frac{{np}}{{2 log np}}\left( {1 + \frac{{\log log np - 1}}{{\log np}}} \right)< \chi (G(n,p))< \frac{{np}}{{2 log np}}\left( {1 + \frac{{30 \log \log np}}{{\log np}}} \right)$$

tends to 1 asn→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Bollobás: The chromatic number of random graphs,Combinatorica,8 (1988), 49–56.

    Google Scholar 

  2. A. M. Frieze: On the independence number of random graphs,Disc. Math.,81 (1990), 171–175.

    Google Scholar 

  3. D. Matula: Expose-and-merge exploration and the chromatic number of a random graph,Combinatorica,7 (1987), 275–284.

    Google Scholar 

  4. D. Matula, andL. Kučera: An expose-and-merge algorithm and the chromatic number of a random graph, in “Proceedings of Random Graphs '87”, Wiley, Chichester, 1990, 175–188.

    Google Scholar 

  5. E. Shamir, andJ. Spencer: Sharp concentration of the chromatic number on random graphsG n, p ,Combinatorica,7 (1987), 124–129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łuczak, T. The chromatic number of random graphs. Combinatorica 11, 45–54 (1991). https://doi.org/10.1007/BF01375472

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01375472

AMS subject classification (1991)

Navigation