Some non-existence results on divisible difference sets


In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches:

  1. (i)

    character sum arguments similar to the work of Turyn [25] for ordinary difference sets,

  2. (ii)

    involution arguments and

  3. (iii)

    multipliers in conjunction with results on ordinary difference sets.

Among other results, we show that an abelian affine difference set of odd orders (s not a perfect square) inG can exist only if the Sylow 2-subgroup ofG is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd ordern.

This is a preview of subscription content, access via your institution.


  1. [1]

    K. T. Arasu: “On Wilbrink's theorem”,J. Comb. Th. Ser. A44, (1987) 156–158.

    Google Scholar 

  2. [2]

    K. T. Arasu: “Another variation of Wilbrink's theorem”,Ars Combinatoria,25 (1988), 107–109.

    Google Scholar 

  3. [3]

    K. T. Arasu: “Cyclic affine planes of even order”,Disc. Math.,76 (1989), 177–181.

    Google Scholar 

  4. [4]

    K. T. Arasu, andD. Jungnickel: “Affine difference sets of even order”,J. Comb. Th. A. 52 (1989), 188–196.

    Google Scholar 

  5. [5]

    K. T. Arasu, andA. Pott: “Relative difference sets with multipliers 2”,Ars Combinatoria,27, (1989), 139–142.

    Google Scholar 

  6. [6]

    T. Beth, D. Jungnickel, andH. Lenz:Design Theory, Bibliographisches Institut, Mannheim (1985), and Cambridge University Press, Cambridge (1986).

    Google Scholar 

  7. [7]

    R. C. Bose: “An affine analogue of Singer's theorem”,J. Ind. Math. Soc. 6 (1942), 1–15.

    Google Scholar 

  8. [8]

    W. de Launey: “On the non-existence of generalized weighing matrices”,Ars Combinatoria 17A (1984), 117–132.

    Google Scholar 

  9. [9]

    J. E. H. Elliott, andA. T. Butso: “Relative difference sets”,Illinois J. Math. 10 (1966), 517–531.

    Google Scholar 

  10. [10]

    M. J. Ganely: “On a paper of Dembowski and Ostrom”,Arch. Math. 27 (1976), 93–98.

    Google Scholar 

  11. [11]

    D. Ghinelli-Smit: “A new result on difference sets with −1 as a multiplier”,Geom. Ded. 23 (1987), 309–317.

    Google Scholar 

  12. [12]

    A. J. Hoffman: “Cyclic affine planes”,Can. J. Math. 4 (1952), 295–301.

    Google Scholar 

  13. [13]

    D. R. Hughes: “Partial difference sets”,Amer. J. Math. 78 (1956), 650–674.

    Google Scholar 

  14. [14]

    B. Huppert:Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

    Google Scholar 

  15. [15]

    E. C. Johnsen: “The inverse multiplier for abelian group difference sets”,Can. J. Math. 16 (1964), 787–796.

    Google Scholar 

  16. [16]

    D. Jungnickel: “Difference sets with multiplier −1”,Arch. Math. 38 (1982), 511–512.

    Google Scholar 

  17. [17]

    D. Jungnmickel: “On automorphism groups of divisible designs”,Can. J. Math. 34 (1982), 257–297.

    Google Scholar 

  18. [18]

    D. Jungnickel: “A note on affine difference sets”,Arch. Math. 47 (1986), 279–280.

    Google Scholar 

  19. [19]

    D. Jungnickel: “On a theorem of Ganley”,Graphs and Comb. 3 (1987), 141–143.

    Google Scholar 

  20. [20]

    D. Jungnickel: “On automorphism groups of divisible designs, II: Group invariant generalized conference matrices”,Arch. Math. 54 (1990), 200–208.

    Google Scholar 

  21. [21]

    H. P. Ko, andD. K. Ray-Chaudhuri: “Multiplier theorems”,J. Comb. Th. A 30 (1981), 134–157.

    Google Scholar 

  22. [22]

    C. W. H. Lam: “On relative difference sets”, Proc. 7th Manitoba conference on numerical math. and computing, (1977), 445–474.

  23. [23]

    A. Pott: “Affine analogue of Wilbrink's theorem”,J. Comb. Th. A.55 (1990), 313–315.

    Google Scholar 

  24. [24]

    A. Pott: “On abelian difference sets with multiplier −1,Arch. Math. 53 (1989), 510–512.

    Google Scholar 

  25. [25]

    R. J. Turyn: “Character sums and difference sets”,Pacific J. Math. 15 (1965), 319–346.

    Google Scholar 

Download references

Author information



Additional information

The first author's research was partially supported by NSA Grant #MDA 904-87-H-2018. The second and fourth authors gratefully acknowledge the hospitality of Wright State University during the time of this research. The last two authors thank the University of Waterloo for its hospitality, and the third author also acknowledges the financial support of NSERC under Grant #IS-0367.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arasu, K.T., Davis, J., Jungnickel, D. et al. Some non-existence results on divisible difference sets. Combinatorica 11, 1–8 (1991).

Download citation

AMS subject classification (1980)

  • 05 B 10 (primary)
  • 05 B 20 (secondary)