Skip to main content
Log in

Comparative quantum-chemical investigation of the CH acidity of some N-methyl-amino derivatives in the gas phase and in solution

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

The equilibrium configuration of the molecules of three derivatives of N-methylnitrosoamine, N,N-dimethylnitramine, and 1-phenyl-1-triazene and their carbanions were calculated by various semiempircal SCF methods and also in the nonempirical 3–21G+ approximation. The optimized geometric parameters of the AM-1 method and the nonempirical 3–21G+ calculation agree with each other and with the experimental data better than the geometric parameters calculated by the MINDO/3 method. The most reliable results are obtained by the AM1 method as applied to the gasphase CH acidity of the N-methylamino derivatives. The scheme for the breakdown of the deprotonation energies of the investigated CH acids into components characterizing the individual atoms and bonds was used to analyze the mechanism of “internal” stabilization of the conjugated carbanions. Comparison of the kinetic CH acidities of the standard hydrocarbons in the basic solution with their deprotonation energies calculated by the AM1 method made it possible to obtain a correlation, the existence of which confirms that there is a single type of mechanism for the stabilization of the carbanions, excluding the solvation effect. The deviation of N-methylamino derivatives from the main line indicates that the solvent has a strong effect on their kinetic CH acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. D. F. Wright, Chemistry of Nitro and Nitroso Groups [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  2. L. V. Vilkov, A. V. Golubinskii, V. S. Mastryukov, et al., Sovrem. Probl. Fiz. Khim., No. 11. 59–112 (1979).

  3. N. N. Zatsepina, I. F. Tupitsyn, A. I. Belyashova, and N. S. Kolodina, Reakts. Sposobn. Org. Soedin.,12, No. 1. 245–261 (1975).

    Google Scholar 

  4. K. Yoshida and Yano Yuminiko, J. Chem. Soc., Perkin Trans. II, No. 12, 2011–2013 (1988).

  5. J. Chandrasekhar, J. G. Andrade, and P. Schleyer, J. Am. Chem. Sac.,103, No. 18, 5609–5612 (1981).

    Google Scholar 

  6. A. C. Hopkinson and M. H. Lien, Int. J. Quantum Chem.,18, No. 6, 1371–1391 (1980).

    Google Scholar 

  7. K. E. Edgecombe and R. L. Boyd, Can. J. Chem.,62, No. 12, 2887–2891 (1984).

    Google Scholar 

  8. I. F. Tupitsyn, A. A. Kane, Yu. A. Puzanov, and A. Yu. Shibaev, Zh. Obshch. Khim.,59, No. 5, 1145–1150 (1989).

    Google Scholar 

  9. J. J. Novia, J. Mol. Struct. Theochem.,136, No. 3/4, 361–369 (1986).

    Google Scholar 

  10. M. J. Dewar and K. M. Dieter, J. Am. Chem. Soc.,108, No. 25, 8075–8086 (1986).

    Google Scholar 

  11. A. Garnieri and R. Nicolaisen, Z. Naturforsch. A,34, No. 5, 620–624 (1979).

    Google Scholar 

  12. P. Rademacher and R. Stolevik, Acta Chem. Scand.,23, No. 2, 660–671 (1969).

    Google Scholar 

  13. A. Randall Jr. and C. H. Schwalbe, J. Chem. Perkin Trans. II, No. 2, 251–253 (1984).

  14. R. Gordon and R. Ford, The Chemist's Companion, Wiley-Interscience (1973).

  15. G. BInshc, Top. Stereochem., No. 3, 97–192 (1968).

  16. B. Ya. Simkin, B. V. Golyanskii, and V. I. Minkin, Zh. Org. Khim.,17, No. 3–13 (1981).

  17. M. Meot-Ner and S. A. Kafafi, J. Am. Chem. Soc.,110, No. 19, 6297–6303 (1988).

    Google Scholar 

  18. G. M. Zhidomirov, A. A. Bagatur'yants, and I. Abronin, Applied Quantum Chemistry: Calculations of Reactivity and Reaction Mechanisms [in Russian], Khimiya, Moscow (1979).

    Google Scholar 

  19. W. A. Sokalski, P. C. Hariharan, and H. E. Popkie, Int. J. Quantum Chem.,18, No. 1. 189–191 (1980).

    Google Scholar 

  20. N. N. Zatsepina, I. F. Tupitsyn, and A. I. Belyashova, Reakts. Sposobn. Org. Soedin.,11. No. 2, 429–442 (1974).

    Google Scholar 

  21. H. Fisher and H. Kollmar, Theor. Chim. Acta,16, No. 3, 163–174 (1970).

    Google Scholar 

  22. I. G. Tupitsyn, A. A. Kane, Yu. V. Puzanov, and A. Yu. Shibaev, Zh. Obshch. Khim.,59, No. 5, 1151–1163 (1989).

    Google Scholar 

  23. O. A. Reutov, I. P. Beletskaya, and K. P. Butik, CH Acids [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  24. A. Streitwieser, Jr. and L. L. Nebenzahl, J. Am. Chem. Soc.,98, No. 8, 2188–2190 (1976).

    Google Scholar 

Download references

Authors

Additional information

Scientific-Production Association, State Institute of Applied Chemistry, Leningrad. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 4, pp. 426–437, July–August, 1991. Original article submitted February 25, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tupitsyn, I.F., Egorov, S.A., Puzanov, Y.V. et al. Comparative quantum-chemical investigation of the CH acidity of some N-methyl-amino derivatives in the gas phase and in solution. Theor Exp Chem 27, 367–376 (1991). https://doi.org/10.1007/BF01372508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01372508

Keywords

Navigation