Skip to main content
Log in

State-complexity of finite-state devices, state compressibility and incompressibility

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

We study how the number of states may change when we convert between different finite-state devices. The devices that we consider are finite automata that are one-way or two-way, deterministic or nondeterministic or alternating. We obtain several new simulation results (e.g., ann-state 2NFA can be simulated by a 1NFA with ≤ 8n + 2 states, and by a 1AFA with ≤n 2 states), and state-incompressibility results (e.g., in order to simulate ann-state 2DFA, a 1NFA needs ≥√/2n−2 states, and a 2AFA needs ≥c√n states for some constant c, in general).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aho, J. Ullman,The Theory of Parsing, Translation and Compiling, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1972.

    Google Scholar 

  2. J. C. Birget, Concatenation of inputs in a two-way automaton,Theoret. Comput. Sci.,63 (1989), 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. C. Birget, Positional simulation of two-way automata: proof of a conjecture of R. Kannan, and generalizations,J. Comput. System Sci. (special issue onSTOC 89),45 (1992), 154–179.

    MathSciNet  MATH  Google Scholar 

  4. J. C. Birget, Two-way automata and length-preserving homomorphisms, Report # 109, Dept. of Computer Science, University of Nebraska (1990) (submitted).

  5. J. C. Birget, The minimum automaton of certain languages (in preparation).

  6. J. C. Birget, Strict local testability of the finite control of two-way automata and of regular picture description languages,Internat. J. Algebra Comput.,1 (1991), 161–175.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. C. Birget, Partial order on words, minimal elements of a regular language, and state-complexity,Theoret. Comput. Sci. (to appear).

  8. J. C. Birget, Intersection and union of regular languages and state-complexity,Inform. Process. Lett.,43 (1992), 185–190.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Blum, C. Hewitt, Automata on a 2-dimensional tape,Proc. 8th IEEE Symp. on Switching and Automata Theory, 1965, pp. 155–160.

  10. R. Book, S. Greibach, Quasi-realtime languages,Math. System Theory,4 (1970), 97–111.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Brzozowski, E. Leiss, On equations for regular languages, finite automata, and sequential networks,Theoret. Computer Sci.,10 (1980), 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Brzozowski, C. Seger, Advances in asynchronous circuit theory, Part 1,Bull. EATCS,42 (1990), 198–249.

    MATH  Google Scholar 

  13. A. Chandra, D. Kozen, L. Stockmeyer, Alternation,J. Assoc. Comput. Mach.,28 (1981), 114–133.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Chandra, L. Stockmeyer, Alternation,Proc. 17th IEEE Symp. on Foundations of Computer Sci., 1976, pp. 98–108.

  15. M. Chrobak, Finite automata and unary languages,Theoret. Comput. Sci.,47 (1986), 149–158.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Eilenberg,Automata, Languages, and Machines, Vol. A, Academic Press, New York, 1974.

    MATH  Google Scholar 

  17. F. C. Hennie, One-tape off-line Turning machine computations,Inform. and Control,8 (1965), 553–578.

    Article  MathSciNet  Google Scholar 

  18. J. Hopcroft, J. Ullman,Introduction to Automata Theory, Languages and Computation, Addison-Wesely, Reading, MA, 1979.

    MATH  Google Scholar 

  19. R. Kannan, Alternation and the power of non-determinism,Proc. 15th ACM Symp. on Theory of Computing, 1983, 344–346.

  20. D. Kozen, On parallelism in Turing machines,Proc. 17th IEEE Symp. on Foundations of Computer Sci 1976, pp. 89–97.

  21. R. Ladner, R. Lipton, L. Stockmeyer, Alternating pushdown automata,Proc. 19th IEEE Symp. on Foundations of Computer Sciences 1978, pp. 92–106, andSIAM J. Comput.,13(1) (1984), 135–155.

  22. E. Leiss, Succinct representation of regular languages by boolean automata,Theoret. Comput. Sci.,13(1981), 323–330.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Leiss, Succinct representation of regular languages by boolean automata,II,Theoret. Comput. Sci.,38 (1985), 133–136.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Leiss, A class of tractable unrestricted regular expressions,Theoret. Comput. Sci.,35 (1985), 313–327.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. McNaughton, S. Papert,Counter-free Automata, MIT Press, Cambridge, MA, 1971.

    MATH  Google Scholar 

  26. A. R. Meyer, M. J. Fischer, Economy of description by automata, grammars, and formal systems,Proc. 21st IEEE Symp. on Switching and Automata Theory, 1971, pp. 188–191.

  27. M. Rabin, D. Scott, Finite automata and their decision problems,IBM J. Res. Develop.,3 (1959), 114–125; also in E. F. Moore (ed.),Sequential Machines: Selected Papers, Addison-Wesley, Reading, MA, 1964.

    Article  MathSciNet  Google Scholar 

  28. W. Sakoda, M. Sipser, Non-determinism and the size of two-way automata,Proc. 10th ACM Symp. on Theory of Computing, 1978, pp. 275–286.

  29. J. C. Shepherdson, The reduction of two-way automata to one-way automata,IBM J. Res. Develop.,3 (1959), 198–200; also in E. F. Moore (ed.),Sequential Machines: Selected Papers, Addison-Wesley, Reading, MA, 1964.

    Article  MathSciNet  Google Scholar 

  30. M. Sipser, Lower bounds on the size of sweeping machines,Proc. 11th ACM Symp. on Theory of Computing, 1979, pp. 360–364; andJ. Comput. System Sci.,21 (1980), 195–202.

  31. M. Sipser, Halting space-bounded computations,Theoret. Comput. Sci.,10 (1980), 335–338 alsoProc. 19th IEEE Symp. on Foundations of Computer Science, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Vardi, A note on the reduction of two-way automata to one-way automata,Inform. Process. Lett.,30 (1989), 261–264.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birget, JC. State-complexity of finite-state devices, state compressibility and incompressibility. Math. Systems Theory 26, 237–269 (1993). https://doi.org/10.1007/BF01371727

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01371727

Keywords

Navigation