Skip to main content
Log in

Prediction of turbulent flow in annular ducts with differential transport model of turbulence

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

In general, flow in an annulus will be strongly asymmetric because of unequal curvatures and, possibly, dissimilar texture of the two boundaries. As a result, the turbulent flow structure in such geometries possesses a number of features which can not satisfactorily be accounted for with a simple model of turbulence. The present paper provides predictions based on a more elaborate model, developed by the author, in which differential transport equations are solved for the turbulent shear stress, the turbulent kinetic energy and the rate of the turbulence energy dissipation, simultaneously with the mean momentum equation. The complete model thus consists of a closed set of four coupled non-linear partial differential equations. Predictions of flow in annuli with both smooth and rough cores with various radius ratios display in all cases very good agreement with experimental results of various authors.

Zusammenfassung

Die Strömung im Ringkanal ist im allgemeinen stark unsymmetrisch wegen unterschiedlicher Wandkrümmungen und u. U. auch Wandtexturen. Die dadurch hervorgerufene Struktur der turbulenten Strömung kann mit einfachen Turbulenzmodellen nicht befriedigend beschrieben werden. In dieser Arbeit wird ein vom Autor entwickeltes verfeinertes Modell verwendet, in dem Transport-Differentialgleichungen gelöst werden für die turbulente Schubspannung, die turbulente kinetische Energie und die Energiedissipation der Turbulenz, zusammen mit der Gleichung des mittleren Impulses. Das vollständige Modell besteht also aus einem geschlossenen Satz von vier gekoppelten nichtlinearen partiellen Differentialgleichungen. Voraussagen für die Ringkanalströmung mit glatter und rauher Innenwand und verschiedenen Durchmesserverhältnissen stimmen sehr gut mit von verschiedenen Autoren gemessenen Werten überein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Br:

free constant in universal velocity expression for rough wall

Bs:

free constant in universal velocity expression for smooth wall

Bs1 :

free constant in universal velocity expression for inner wall of a smooth annulus

Ce :

constant in turbulence energy equation

Cs, Cs1, Cs2 :

constants in shear stress equation

Cε, Csε1, Csε2 :

constants in dissipation equation

e:

turbulent kinetic energy

f:

friction factor

L:

turbulence dissipation length scale

P:

mean pressure

Re:

mean flow Reynolds number

r:

radius

r1, r2 :

radius of inner and outer wall of an annulus respectively

re :

radius at which turbulent kinetic energy is minimum

rM :

radius at which mean velocity is maximum

r0 :

radius at which turbulent shear stress is zero

U:

mean velocity

Ui :

mean velocity component in i-direction

UM :

maximum mean velocity

Uτ1, Uτ2 :

friction velocity at inner and outer wall respectively

U+ :

dimensionless velocity: U/Uτ

Ui :

fluctuating velocity component in i-direction

ũi :

r.m.s. of the fluctuating velocity component

xi :

Cartesian coordinates (i=1 mean flow direction, i=2 direction normal to the wall)

x +2 :

dimensionless coordinate: x2 Uτ/v

ɛ :

rate of dissipation of turbulent kinetic energy:\(v\overline {(\vartheta _{U_i } /\vartheta _{X_j } )^2 }\)

κ :

von Karman constant

ν :

kinematic viscosity

τ :

total shear stress

τ 1,τ 2 :

shear stress at inner and outer wall of an annulus respectively

References

  1. Quarmby, A.: An experimental study of turbulent flow through concentric annuli. Int. J. Mech. Sci. 9 (1967) 205/221.

    Google Scholar 

  2. Durst, F.: On turbulent flow through annular passages with smooth and rough cores. M. Sc. thesis, Univ. of London (1968).

  3. Lawn, C. J.: Application of the turbulence energy equation to fully developed flow in simple ducts. CEGB Rep. RD/B 1575 (1970).

  4. Lawn, C. J., Hamlin, M. J.: Velocity measurements in roughened annuli. CEGB Rep. RD/B/N 1278 (1969).

  5. Ying, M. W.: A theoretical method of predicting heat transfer and friction factor in annuli with roughened core tubes. M. Sc. thesis, Univ. of London (1967).

  6. Hanjalić, K.: Twodimensional asymmetric turbulent flow in ducts. Ph. D. thesis, Univ. of London (1970).

  7. Hanjalić, K., Launder, B. E.: A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, part 4 (1972) 609/638.

    Google Scholar 

  8. Uberoi, M. S.: Equipartition of energy and local isotropy in turbulent flows. J. Appl. Physics 28, No. 10 (1957) 1165/1170.

    Google Scholar 

  9. Tucker, H. J., Reynolds, A. J.: The distortion of turbulence by irrotational plane strain. J. Fluid Mech. 32 (1968) 657/672.

    Google Scholar 

  10. Batchelor, G. K., Townsend, A. A.: Decay of turbulence in the initial period. Proc. Roy. Soc. A 193 (1948) 539/558.

    Google Scholar 

  11. Patankar, V. S., Spalding, D. B.: Heat and Mass Transfer in Boundary Layers. Morgan-Granpian Press, London (1967).

    Google Scholar 

  12. Hanjalić, K., Launder, B. E.: Fully developed asymmetric flow in a plane channel. J. Fluid Mech. 51, part 2 (1972) 301/335.

    Google Scholar 

  13. Kays, W. M., Leung, E. Y.: Heat transfer in annular passages-hydrodynamically developed turbulent flow with arbitrarily prescribed heat flux. Int. J. Heat Mass Transfer 6 (1963) 537/557.

    Google Scholar 

  14. Brighton, J. A., Jones, J. B.: Fully developed turbulent flow in annuli. J. of Basic Eng. Trans. ASME 86 (1964) 835/844.

    Google Scholar 

  15. Jonsson, V. K., Sparrow, E. M.: Turbulent diffusivity for momentum in concentric annuli. J. Basic Eng. Trans. ASME Ser. D, 88 (1966) 550/562.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanjalić, K. Prediction of turbulent flow in annular ducts with differential transport model of turbulence. Wäarme- und Stoffübertragung 7, 71–78 (1974). https://doi.org/10.1007/BF01369514

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01369514

Keywords

Navigation