Skip to main content
Log in

Monte Carlo modelling of electron beam lithography: a scaling law

  • Originals
  • Technical Papers
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The Π theorem of Dimensional Analysis, usually applied to the inference of physical laws, is for the first time applied to the derivation of interpolation curves of numerical data, leading to a simplified dependence on a reduced number of arguments Π, dimensionless combination of variables. In particular, Monte Carlo modelling of electron beam lithography is considered and the backscattering coefficient η addressed, in case of a general substrate layer, in the elastic regime and in the energy range 5 to 100 keV. The many variables involved (electron energy, substrate physical constants and thickness) are demonstrated to ultimately enter in determining η through asingle dimensionless parameter Π0. Thus, a scaling law is determined, an important guide in microsystem designing, indicating, if any part of the configuration is modified, how the other parameters should change (or “scale”) without affecting the result. Finally, a simple law η=83 Π0 is shown to account for all variations of the parameters over all substrates of the periodic table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archard, G.D.: Back scattering of electrons. J. Appl. Phys. 32 (1961) 1505–1509

    Google Scholar 

  • Berger, M.J.;Seltzer, S.M.: Studies in penetration of charged particles in matter. Natl. Acad. Sci.-Natl. Res. Council, Publ. 1133 (Washington, D.C.): (1964) 205–268

    Google Scholar 

  • Bethe, H.: Zur theorie des durchgangs schneller elektronen durch materie. Annalen Phys. 5 (1930) 325–400

    Google Scholar 

  • Buckingham, E.: For an exhaustive discussion of the Π theorem see, for example, Bridgman, P.W. (1931), Dimensional Analysis. New Haven, Yale University Press.

    Google Scholar 

  • Everhart, T.E.: Simple theory concerning the reflection of electrons from solids. J. Appl. Phys. 31 (1960) 1483–1490

    Google Scholar 

  • Greeneich, J.S.: Electron beam process, in: Electron beam technology in microelectronic fabrication. Brewer G.R. ed., Academic Press, New York: (1980) 59–139

    Google Scholar 

  • Goudsmit, S.;Saunderson, J.L.: Multiple scattering of electrons. Phys. Rev. 57 (1940) 24–29

    Google Scholar 

  • Hawryluk, R.J. Hawryluk, A.M.;Smith, H.I.: Energy dissipation in a thin polymer film by electron beam scattering. J. Appl. Phys. 45 (1974) 2551–2566

    Google Scholar 

  • Joachain, C.J.: Quantum collision theory. (1975) Elsevier Science Publisher, Amsterdam

    Google Scholar 

  • Kalos, M.H.; Whitlock, P.A.: Monte Carlo methods (1985) John Wiley & Sons

  • Kyser, D.F.: Monte Carlo simulation of spatial resolution limits in electron beam lithography, in: Electron beam interactions with solids. Kyser, D.F., Newbury, D.E., Niedrig H., Shimizu, R., eds.., SEM, Inc., AMF O'Hare (Chicago), IL 60666, U.S.A. (1984) 331–342

    Google Scholar 

  • Leisegang, S.: Zur Mehrfachstreuung von Elektronen in duennen Schichten. Z. Phys. 132 (1952) 183–198

    Google Scholar 

  • Lenz, F.: Zur Streuung mittelschneller elektronen in kleinste winkel. Z. Naturforsch 9a (1954) 185–204

    Google Scholar 

  • Messina, G.;Paoletti, A.;Santangelo, S.;Tucciarone, A.: Electron Scattering in Microstructure Processes. La Rivista del Nuovo Cimento 15 (1992) 1–57

    Google Scholar 

  • Messina, G.;Paoletti, A.;Santangelo, S.;Tucciarone, A.: Short range and long range scattering in electron beam lithography. Microelectron. Eng. 20 (1993) 241–253

    Google Scholar 

  • Messina, G.;Santangelo, S.;Tucciarone, A.: A new electron scattering model for x-ray lithography applications, in: Process and device modeling for microelectronics. Baccarani G. ed., Elsevier Science Publisher, Amsterdam (1993) 1–29

    Google Scholar 

  • Murata, K.;Matsukawa, T.;Shimizu, R.: Monte Carlo calculation of electron scattering in a solid target. Jpn. J. Appl. Phys. 10 (1971) 678–686

    Google Scholar 

  • Niedrig, H.: Analytical models in electron backscattering, in: Electron beam interactions with solids. Kyser D.F., Newbury D.E., Niedrig H., Shimizu R. eds., SEM, Inc. AMF O'Hare (Chicago), IL 60666, U.S.A. (1984) 51–68

    Google Scholar 

  • Nigam, B.D.;Sundaresan, M.K.;Wu, T-Y.: Theory of multiple scattering: second Born approximation and corrections to Moliere's work. Phys. Rev. 115 (1959) 491–502

    Google Scholar 

  • Parikh, M.: Correction to proximity effects in electron beam lithography. J. Appl. Phys. 50 (1979) 4371–4387

    Google Scholar 

  • Rao-Sahib, T.S.;Wittry, D.B.: X-ray continuum form thick elemental targets for 10–50 keV electrons. J. Appl. Phys. 45 (1974) 5060–5068

    Google Scholar 

  • Rubistein, R.Y.: Simulation and the Monte Carlo methods. (1981) John Wiley & Sons

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messina, G., Santangelo, S., Paoletti, A. et al. Monte Carlo modelling of electron beam lithography: a scaling law. Microsystem Technologies 1, 23–29 (1994). https://doi.org/10.1007/BF01367757

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01367757

Keywords

Navigation