Skip to main content
Log in

In vitro crystallisation systems for the study of urinary stone formation

  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Various methods and techniques are aimed at modelling crystallisation processes of urinary stone formation in vitro. There are considerable differences between them in technical and physico-chemical principles, quantification of crystal nucleation, growth and agglomeration and the parameters measured. In this paper, some important in vitro systems are described as examples. They are compared with regard to some of their features and capabilities. Emphasis has been placed on evaluation of the physiological relevance of the methods. For that reason, the different in vitro models have been related to current views on intrarenal in vivo mechanisms underlying stone formation and other independent experimental results. Crystallisation procedures carried out in aqueous solutions are likely to mimic crystalluria, corresponding to a free-particle mechanism. However, a specifically tailored flow technique of crystallisation in gels seems to be a reasonable model of stone formation, in accordance with the generally accepted fixed-particle theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achilles W (1991) Microphotometric quantification of crystal growth in gels for the study of calcium oxalate urolithiasis. Scanning Microsc 5: 1001–1017

    Google Scholar 

  2. Achilles W (1995) Gel crystallization methods. In: Rao PN, Kavanagh JP, Tiselius H-G (eds) Urolithiasis: consensus and controversies. Rao & Kavanagh: South Manchester University Hospital, Manchester, pp 75–81

    Google Scholar 

  3. Achilles W, Dekanic D, Burk M, Schalk C, Tucak A, Karner I (1991) Crystal growth of calcium oxalate in urine of stoneformers and normal controls. Urol Res 19: 159–164

    PubMed  Google Scholar 

  4. Achilles W, Freitag R, Kiss B, Riedmiller H (1995) Quantification of crystal growth of calcium oxalate in gel and its modification of urinary constituents in a new flow model of crystallization. J Urol 154: 1552–1556

    PubMed  Google Scholar 

  5. Achilles W, Joeckel U, Schaper A, Burk M, Riedmiller H (1995) In vitro formation of “urinary stones”: generation of spherulites of calcium phosphate in gel and overgrowth with calcium oxalate using a new flow model of crystallization. Scanning Microsc 9: 577–586

    PubMed  Google Scholar 

  6. Achilles W, Kröning M, Schaper A, Khan SR, Riedmiller H (1995) Specific nucleation by phospholipids of spherulitic calcium phosphate and calcium oxalate crystals in a gel matrix. In: Rao PN, Kavanagh JP, Tiselius H-G (eds) Urolithiasis: consensus and controversies. Rao & Kavanagh: South Manchester University Hospital, Manchester, pp 275–277

    Google Scholar 

  7. Baumann JM (1988) How to measure crystallisation conditions in urine: a comparison of 7 methods. Urol Res 16: 137–142

    PubMed  Google Scholar 

  8. Baumann JM (1995) Methods for crystallization studies — introduction. In: Rao PN, Kavanagh JP, Tiselius HG (eds) Urolithiasis: consensus and controversies. Rao & Kavanagh: South Manchester University Hospitals, Manchester, pp 57–63

    Google Scholar 

  9. Baumann JM, Lauber K, Lustenberger FX, Wacker M, Zingg EJ (1985) Crystallization conditions in urine of patients with idiopathic recurrent calcium nephrolithiasis and with hyperparathyroidism. Urol Res 13: 169–174

    PubMed  Google Scholar 

  10. Boyce W (1968) Organic matrix of human urinary concretions. Am J Med 45: 673–683

    PubMed  Google Scholar 

  11. Campbell AA, Ebrahimpur A, Perez L, Smesko SA, Nancollas GH (1989) The dual role of polyelectrolytes and proteins as mineralization promoters and inhibitors of calcium oxalate monohydrate. Calcif Tissue Int 45: 122–128

    PubMed  Google Scholar 

  12. Carr JA (1953) The pathology of urinary calculi. Radial striation. Br J Urol 25: 26–32

    PubMed  Google Scholar 

  13. Cifuentes Delatte L, Medina JA, Bellanato J, Santos M (1984) Papillensteine und Randallsche Plaques. Fortschr Urol Nephrol 22: 240–246

    Google Scholar 

  14. DeBruijn WC, Boeve ER, Vanrun P, Vanmiert P, Dewater R, Romijn JC, Verkoelen CF, Cao LC, Schroder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats 1. Can this be a model for human stone formation? Scanning Microsc 9: 103–114

    PubMed  Google Scholar 

  15. DeBruijn WC, Boeve ER, Vanrun P, Vanmiert P, Dewater R, Romijn JC, Verkoelen CF, Cao LC, Vantnoordende JM, Schroder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. 2. The role of the papilla in stone formation. Scanning Microsc 9: 115–125

    PubMed  Google Scholar 

  16. De Jong ASH, Hak TJ, Van Duijn P (1980) The dynamics of calcium phosphate precipitation studied with a new polyacrylamide steady state matrix model: influence of pyrophosphate, collagen and chondroitinsulfate. Connect Tiss Res 7: 73–79

    Google Scholar 

  17. Dussol B, Geider S, Lilova A, Leonetti F, Dupuy P, Daudon M, Berland Y, Dagorn JC, Verdier JM (1995) Analysis of the soluble organic matrix of five morphologically different kidney stone — evidence for a specific role of albumin in the constitution of the stone protein matrix. Urol Res 23: 45–51

    PubMed  Google Scholar 

  18. Finlayson B (1982) Pathologic mineralization, nucleation, growth, and retention. In: Nancollas G (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York, pp, 271–285

    Google Scholar 

  19. Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15: 442–448

    PubMed  Google Scholar 

  20. Grases F, Conte A (1992) Urolithiasis, inhibitors and promoters. Urol Res 20: 86–88

    PubMed  Google Scholar 

  21. Grases F, Millan A, Soehnel O (1992) Role of agglomeration in calcium oxalate monohydrate urolith development. Nephron 61: 145–150

    PubMed  Google Scholar 

  22. Henisch HK (1970) Crystal growth in gels. Pennsylvania State University Press, London

    Google Scholar 

  23. Hennequin C, Lalanne V, Daudon M, Lacour B, Drueke T (1993) A new approach to studying inhibitors of calcium oxalate crystal growth. Urol Res 21: 101–108

    PubMed  Google Scholar 

  24. Hess B, Nakagawa Y, Coe FL (1989) Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am J Physiol 257: F99–106

    PubMed  Google Scholar 

  25. Hess B, Meinhardt U, Zipperle L, Giovanoli R, Jaeger P (1995) Simultaneous measurements of calcium oxalate crystal nucleation and aggregation: impact of various modifiers. Urol Res 23: 231–238

    PubMed  Google Scholar 

  26. Hufnagel A, Ottenjann H, Schaper A, Achilles W (1996) Experiments on the formation of artificial urinary stones. Effects of spherulites of calcium phosphate on the morphology of stone-like particles. In: Tiselius HG (ed) Renal stones — aspects on their formation, removal and prevention. Proceedings of the Sixth European Symposium on Urolithiasis. Akademitryck, Edsbruk Stockholm, pp 30–31

    Google Scholar 

  27. Hunter GK, Nyburg SC, Pritzker KPH (1986) Hydroxyapatite formation in collagen, gelatin, and agarose gels. Collagen Rel Res 6: 229–238

    Google Scholar 

  28. Iwata H, Abe Y, Nishio S, Wakatsuki A, Ochi K, Takeuchi M (1986) Crystal — matrix interrelations in brushit and uric acid calculi. J Urol 135: 397–401

    PubMed  Google Scholar 

  29. Kavanagh JP (1992) Methods for the study of calcium oxalate crystallisation and their application to urolithiasis research. Scanning Microsc 6: 685–705

    PubMed  Google Scholar 

  30. Kavanagh JP (1995) The kidney as a mixed suspension mixed product removal (MSMPR) crystallization chamber. In: Rao PN, Kavanagh JP, Tiselius HG (eds) Urolithiasis: consensus and controversies. Rao & Kavanagh: South Manchester University Hospital, Manchester, pp 89–93

    Google Scholar 

  31. Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9: 89–101

    PubMed  Google Scholar 

  32. Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23: 71–79

    PubMed  Google Scholar 

  33. Khan SR, Opalko FJ (1995) Constant composition crystallization system. In: Rao PN, Kavanagh JP, Tiselius HG (eds) Urolithiasis: consensus and controversies. Rao & Kavanagh: South Manchester University Hospital, Manchester, pp 83–87

    Google Scholar 

  34. Khan SR, Whalen PO, Glenton PA (1993) Heterogeneous nucleation of calcium oxalate crystals in the presence of membrane vesicles. J Crystal Growth 134: 211–218

    Google Scholar 

  35. Kim D, Grover PK, Ryall RL (1996) A comparison of the effects of Tamm-Horsfall glycoprotein on calcium oxalate crystallization in an inorganic solution and in undiluted human urine. In: Pak CYC, Resnick MI, Preminger GM (eds) Urolithiasis 1996. Millet, Dallas, pp 277–278

    Google Scholar 

  36. Kim D, Grover PK, Ryall RL (1996) The effect of seed crystals of brushite and hydroxyapatite on calcium oxalate crystallization in undiluted human urine. In: Pak CYC, Resnick MI, Preminger GM (eds) Urolithiasis 1996. Millet, Dallas, pp 269–270

    Google Scholar 

  37. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46: 847–854

    PubMed  Google Scholar 

  38. Kok DJ, Papapoulos SE, Blomen LJMJ, Bijvoet OLM (1988) Modulation of calcium oxalate monohydrate crystallization kinetics in vitro. Kidney Int 34: 346–350

    PubMed  Google Scholar 

  39. Kok DJ, Papapoulos SE, Bijvoet OLM (1990) Crystal agglomeration is a major element in calcium oxalate urinary formation. Kidney Int 37: 51–56

    PubMed  Google Scholar 

  40. LeGeros RZ, Morales P (1973) Renal stone crystals grown in gel. Invest Urol 11: 12–20

    PubMed  Google Scholar 

  41. Lieske JC, Toback FG (1996) Interaction of urinary crystals with renal epithelial cells in the pathogenesis of nephrolithiasis. Semin Nephrol 16: 458–473

    PubMed  Google Scholar 

  42. Lonsdale K (1968) The solid state: epitaxy as a growth factor in urinary calculi and gallstones. Nature 217: 56–58

    PubMed  Google Scholar 

  43. Mandel NS, Mandel GS (1981) Epitaxis between stone-forming crystals at the atomic level. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis — clinical and basic research. Plenum Press, New York, pp 469–480

    Google Scholar 

  44. Nancollas GH (1983) Crystallization theory relating to urinary stone formation. World J Urol 1: 131–137

    Google Scholar 

  45. Nielsen AE, Hunding A, Pokric B (1977) Kinetics of precipitation in gel. Croat Chem Acta 50: 39–64

    Google Scholar 

  46. Ottenjann H, Hufnagel A, Schaper A, Achilles W (1996) Experiments on the formation of artificial urinary stones. 2. Effects of urinary macromolecules on the morphology of stonelike particles. In: Tiselius HG (ed) Renal stones — aspects on their formation, removal and prevention. Proceedings of the Sixth European Symposium on Urolithiasis. Akademitryck, Edsbruk Stockholm, pp 32–33

    Google Scholar 

  47. Pak CYC, Resnick MI, Preminger GM (1996) Urolithiasis 1996. Millet, Dallas

    Google Scholar 

  48. Pokric B, Pucar Z (1979) Precipitation of calcium phosphates under conditions on double diffusion in collagen and gels of gelatin and agar. Calcif Tissue Int 27: 171–176

    PubMed  Google Scholar 

  49. Rao PN, Kavanagh JP, Tiselius H-G (1995) Methods for crystallization studies — summary. In: Rao PN, Kavanagh JP, Tiselius H-G (eds) Urolithiasis: consensus and controversies. Rao & Kavanagh: South Manchester University Hospital, Manchester, pp 95–97

    Google Scholar 

  50. Robertson WG (1982) The solubility concept. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York, pp 5–21

    Google Scholar 

  51. Robertson WG, Scurr DS (1986) Modifiers of calcium oxalate crystallization found in urine. I. Studies with a continuous crystallizer using an artificial urine. J Urol 135: 1322–1326

    PubMed  Google Scholar 

  52. Rodgers AL, Ball D, Harper W (1994) Effect of urinary macromolecules and chondroitin sulphate on calcium oxalate crystallization in urine. Scanning Microsc 8: 71–77

    PubMed  Google Scholar 

  53. Rodgers AL, Hibbert B, Probyn T (1995) Determination of urinary calcium oxalate crystallization mechanisms and kinetics using flow cytometry. Urol Int 55: 93–100

    PubMed  Google Scholar 

  54. Ryall R (1995) Batch crystallizers: long shots and shortcomings. In: Rao PN, Kavanagh JP, Tiselius HG (eds) Urolithiasis: consensus and controversies. Rao & Kavanagh: South Manchester University Hospital, Manchester, pp 65–74

    Google Scholar 

  55. Ryall RL, Grover PK, Stapleton AMF, Barrell D, Tang A, Moritz R, Simpson RJ (1996) Urinary prothrombin fragment 1 potently inhibits calcium oxalate crystallization in undiluted human urine in vitro. In: Pak CYC, Resnick MI, Preminger GM (eds) Urolithiasis 1996. Millet, Dallas, pp 211–213

    Google Scholar 

  56. Sheehan ME, Nancollas GE (1980) Calcium oxalate crystal growth. A new constant composition method for modelling urinary stone formation. Invest Urol 17: 446–450

    PubMed  Google Scholar 

  57. Soehnel O, Grases F, Garciaferragut L (1994) Role of agglomeration in the early stages of papillar stone formation. Scanning Microsc 8: 513–522

    PubMed  Google Scholar 

  58. Stapleton A, Seymour AE, Brennan JS, Doyle IR, Marshall VR, Ryall RL (1993) Immunohistochem. Distribution and quantification of crystal matrix protein. Kidney Int 44: 817–824

    Google Scholar 

  59. Sutor DJ, Percival JM, Doonan S (1979) Urinary inhibitors of the formation of calcium oxalate. Br J Urol 51: 253–255

    PubMed  Google Scholar 

  60. Suzuki K, Ryall RL (1996) The effect of heparan sulphate on the crystallization of calcium oxalate in undiluted, ultrafiltered human urine. Br Urol 78: 15–21

    Google Scholar 

  61. Suzuki K, Moriyama M, Nakajima C, Kawamura K, Miyazawa K, Tsugawa R, Kikuchi N, Nagata K (1994) Isolation and partial characterization of crystal matrix protein as a potent inhibitor of calcium oxalate crystal aggregation — evidence of activation peptide of human prothrombin. Urol Res 22: 45–50

    PubMed  Google Scholar 

  62. Tiselius HG (1996) Renal stones — aspects on their formation, removal and prevention. Proceedings of the Sixth European Symposium in Urolithiasis. Akademitryck, Edsbruk Stockholm

    Google Scholar 

  63. Will J, Bijvoet LM, Blomen JMJ, VanderLinden H (1983) Growth kinetics of calcium oxalate monohydrate. I. Method and validation. J Crystal Growth 64: 297–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achilles, W. In vitro crystallisation systems for the study of urinary stone formation. World J Urol 15, 244–251 (1997). https://doi.org/10.1007/BF01367662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01367662

Keywords

Navigation