Skip to main content

Advertisement

Log in

Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABAA receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (V d ) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer's disease (AD), where synaptic loss tends indiscriminately to affect all cortical neurons, albeit more so in some areas than in others. In this pilot study we measured V d in six patients with probable AD and in five age-matched controls using a brain-dedicated single-photon emission tomography scanner allowing all cortical levels to be sampled simultaneously. Reduced values were found in all regions except in the occipital (visual) cortex. In particular, temporal and parietal cortexV d was significantly (P<0.02) reduced: temporalV d averaged 69 ml/ml in normals and 51 ml/ml in AD, and parietalV d averaged 71 ml/ml in normals and 48 ml/ml in AD. These results accord well with emission tomographic studies of blood flow or labelled glucose. This supports the idea that while only measuring a subpopulation of synapses, the IMZ method reflects synaptic loss and hence functional loss in AD. The method constitutes an in vivo version of synaptic quantitation that in histopathological studies has been shown to correlate closely with the mental deterioration in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordberg A. Neuroreceptor changes in Alzheimer disease.Cerebrovasc Brain Metab Rev 1992; 4: 303–328.

    PubMed  Google Scholar 

  2. Greenamyre JT, Maragos F. Neurotransmitter receptors in Alzheimer disease.Cerebrovasc Brain Metab Rev 1993; 5: 61–94.

    PubMed  Google Scholar 

  3. Oslen RW. The GABA postsynaptic membrane receptor ionophore complex.Mol Cell Biochem 1981; 39: 261–279.

    PubMed  Google Scholar 

  4. Hunkeler W, Möhler H, Pieri L. Selective antagonist of benzodiazepines.Nature 1981; 290: 514–516.

    PubMed  Google Scholar 

  5. Shinotoh H, Yamasaki T, Inoue O, Itch T, Suzuki K, Hashimoto K, Tateno Y, Ikeria H. Visualization of specific binding sites of benzodiazepine in human brain.J Nucl Med 1986; 27: 1593–1599.

    PubMed  Google Scholar 

  6. Beer HF, Blauentein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, Hunkeler W, Bonetti EP, Pieri L, Richards JG, Schubiger PA. In vivo and in vitro evaluation of iodine 123-RO16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors.J Nucl Med 1990; 31: 1007–1014.

    PubMed  Google Scholar 

  7. Videboek C, Friberg L, Holm S, Wammen S, Foged C, Andersen JV, Dalgaard L, Lassen NA. Benzodiazepine receptor equilibrium constants for flumazenil and medazoiam determined in humans with the single photon emission computer tomography trace (123-I)iomazenil.Eur J Pharmacol 1993; 249: 43–51.

    PubMed  Google Scholar 

  8. Abi-Dargham A, Laruelle M, Seibyl J, Rattner Z, Baldwin RM, Zoghbi SS, Zea-Ponce Y, Bremmer JD, Hyde TM, Charney DS, Hoffer PB, Innis RB. SPECT measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil: kinetic and equilibrium paradigms.J Nucl Med 1994; 35: 228–238.

    PubMed  Google Scholar 

  9. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA work group.Neurology 1984; 34: 939–944.

    PubMed  Google Scholar 

  10. Laurell M, van Dyck C, Abi-Dargham A, Zea-Ponche Y, Zoghbai S, Charney D, Baldwin R, Hoffer P, Kung H, Innies R. Compartmental modeling of iodine-123 iodo-benzofuran binding to dopamine D2 receptors in healthy subjects.J Nucl Med 1994; 35: 743–754.

    PubMed  Google Scholar 

  11. Onishi Y, Yonekura Y, Mukai T, Nishizawa S, Tanaka F, Okazawa H, Ishizu K, Fujita T, Hiroshi S, Konishi J. Simple quantification of benzodiazepine receptor binding and ligand transport using iodine-123-iomazenil and two SPECT scans.J Nucl Med 1995; 36: 1201–1210.

    PubMed  Google Scholar 

  12. Iida H, Rob H, Bloomfield P, Masahiro M, Shuichi H, Matsutaro M, Atsushi I, Stefan E, Yasuo A, Iwao K, Kazuo U. A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 iodamphetamine with one blood sample.Eur J Nucl Med 1994; 21: 1072–1084.

    PubMed  Google Scholar 

  13. Odano I, Takahashi N, Ohkubo M, Yonekura Y SPECT measurement of benzodiazepine receptors in patients with Parkinson's disease with iodine-123 labeled iomazenil.J Nucl Med 1995;36:241P.

    Google Scholar 

  14. De Kosky ST, Bass NH. Biochemistry of senile dementia. In: Lajtha A, ed.Handbook of neurochemistry. New York: Plenum Press; 1985: 617–649

    Google Scholar 

  15. Davies CA, Mann DM, Sumpter PQ, Yates PO. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease.J Neurol Sci 1987; 78: 151–164.

    PubMed  Google Scholar 

  16. Schell SW, De Kosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer's disease.Neurobiol Aging 1990; 11: 29–37.

    PubMed  Google Scholar 

  17. Masliah E, Terry RD, De Teresa RM, Hansen LA. Immunohistochemical quantification of the synapse related protein synaptophysin in Alzheimer's disease.Neurosci Lett 1989; 103: 234–239.

    PubMed  Google Scholar 

  18. Hamos JE, De Gennaro LJ, Drachman DA. Synaptic loss in Alzheimer's disease and other dementias.Neurology 1989; 39: 355–361.

    PubMed  Google Scholar 

  19. Terry RD, Masliah E, Salmon DP, Butters N, De Teresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.Ann Neurol 1991; 30: 572–580.

    PubMed  Google Scholar 

  20. Kanno I, Lassen NA. Two methods for calculation of regional cerebral blood flow from emission computed tomography of inert gas concentrations.J Comput Assist Tomogr 1979; 3: 71–76.

    PubMed  Google Scholar 

  21. Rapoport SI. Positron emission tomography in Alzheimer's disease in relation to pathogenesis: a critical review.Cerebrovasc Brain Metab Rev 1991; 3: 297–335.

    PubMed  Google Scholar 

  22. Waldemar G. Functional brain imaging with SPECT in normal aging and dementia.Cerebrovasc Brain Metab Rev 1995; 7: 89–130.

    PubMed  Google Scholar 

  23. Weinberger DR, Jones D, Reba RC, Mann U, Coppola R, Gibson R, Gorey J, Braun A, Chase TN. A comparison of FDG PET and IQNB SPECT in normal subjects and in patients with dementia.J Neuropyschiatry Clin Neurosci 1992; 4: 239–248.

    Google Scholar 

  24. Wyper DJ, Brown D, Patterson J, Owens J, Hunter R, Teasdale E, McCulloch J. Deficits in iodine-labelled 3-quinuclidinyl benzilate binding in relation to cerebral blood flow in patients with Alzheimer's disease.Eur J Nucl Med 1993; 20: 379–386.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soricelli, A., Postiglione, A., Grivet-Fojaja, M.R. et al. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses. Eur J Nucl Med 23, 1323–1328 (1996). https://doi.org/10.1007/BF01367587

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01367587

Key words

Navigation