Skip to main content
Log in

Breakdown of superconductivity in current-carrying indium whiskers

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Like whiskers of tin andtin-indium alloys indium whiskers showV-T andV-I characteristics with a large transition width and regular voltage steps. Applied HF-radiation leads to additional steps of zero slope in theV-I characteristics (“current steps”) at voltages related to the applied frequency by the Josephson relation, supporting the assumption that phase-slip processes at Josephson frequency are related to the appearance of voltage steps in the transition curves without radiation. At temperatures very close to the critical temperatureT c0 theV-I characteristics beyond the first voltage step show a differential resistance (dV/dI)1 and a ratioI 0/I c which grow with increasing temperature, contrary to tin andtin-indium alloy whiskers (I c : critical current,I 0: extrapolated zero voltage intercept). A probable explanation for this observation is, that in indium whiskers very close toT c0 nonequilibrium quasiparticles relax by branch crossing processes due to inelastic electron phonon scattering or gap anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review of Ginsburg-Landau theory see for instance: Saint-James, D., Thomas, E.J., Sarma, G.: Type II Superconductivity, 1st ed. Chap. 2,5. London: Pergamon Press 1969; Tinkham, M.: Introduction to Superconductivity, 1st ed. Chap. 4. New York: Mc Graw Hill Book Company 1975

    Google Scholar 

  2. Skocpol, W.J., Beasley, M.R., Tinkham, M.: J. Low Temp. Phys.16, 145 (1974)

    Google Scholar 

  3. Klapwijk, T.M., Mooij, J.E.: Phys. Lett.57A, 97 (1976)

    Google Scholar 

  4. Klapwijk, T.M., Sepers, M., Mooij, J.E.: J. Low Temp. Phys.27, 801 (1977)

    Google Scholar 

  5. Müller, W.H.-G.: Widerstandsverhalten sehr schmaler Wismutschichten beim Eintritt der Supraleitung. Thesis, Universität Karlsruhe (1973)

  6. Meyer, J.D.: Appl. Phys.2, 303 (1973) Meyer, J., Minnigerode, G. v.: Phys. Lett.38A, 529 (1972) Meyer, J., Minnigerode, G.v.: Low Temperature Physics LT 13, Vol. 3, pp. 701–704. Edited by Timmerhaus, K.D., O'Sullivan, W.J., Hammel, E.F., New York: Plenum Publishing Corporation 1972

    Google Scholar 

  7. Meyer, J.D., Tidecks, R.: Solid State Comm.18, 305 (1976)

    Google Scholar 

  8. Tidecks, R., Meyer, J.D.: Z. Physik B32, 363 (1979)

    Google Scholar 

  9. Rieger, T.J., Scalapino, D.J., Mercereau, J.E.: Phys. Rev. B6, 1734 (1972)

    Google Scholar 

  10. Meyer, J.D., Tidecks, R.: Solid State Comm.24, 639 (1977)

    Google Scholar 

  11. Tidecks, R., Minnigerode, G.v.: phys. stat. sol. (a)52, 421 (1979)

    Google Scholar 

  12. Wilke, K.-Th.: Methoden der Kristallzüchtung, 1st ed. pp. 434–474. Frankfurt/Main: Verlag Harri Deutsch 1963

    Google Scholar 

  13. Meyer, J.D., Tidecks, R.: Solid State Comm.24, 643 (1977)

    Google Scholar 

  14. Tinkham, M.: J. Low Temp. Phys.35, 147 (1979)

    Google Scholar 

  15. White, G.K., Woods, S.B.: The Review of Scientific Instruments28, 638 (1957) (For an indium wire with a resistance ratioR 4.2K/R 295K≈9⋅10−5 the authors obtain an electrical resistivity at 295K ofρ 295K=8.8⋅10−6Ωcm. Thusρ 298K=(298K/295K)ρ 295K=8.9⋅10−2Ωµm)

    Google Scholar 

  16. Aleksandrov, B.N.: Soviet Phys. JETP16, 286 (1963) (We take the value (ρ⋅l)=1.48⋅10−3Ωµm2 from Table 3, the author has obtained for an indium single crystal with unknown orientation.)

    Google Scholar 

  17. Warburton, R.J., Webb, W.W.: Fluctuations Near the Phase Transition in ‘One-Dimensional’ Superconductors, in: Critical Phenomena in Alloys, Magnets and Superconductors. Mills, R.E., Asher, E., Jaffee, R.J. (eds.) pp. 451–469. New York: Mc Graw Hill Book Company 1970 Webb, W.W., Warburton, R.J.: Phys. Rev. Lett.20, 461 (1968) Lukens, J.E., Warburton, R.J., Webb, W.W.: Phys. Rev. Lett.25, 1180 (1970) Newbower, R.S., Beasley, M.R., Tinkham, M.: Phys. Rev. B5, 864 (1972)

    Google Scholar 

  18. Josephson, B.D.: Phys. Lett.1, 251 (1962)

    Google Scholar 

  19. Meyer, J.D.: Appl. Phys.2, 303 (1973). Differential resistance evaluated from original size plots of Fig. 7, 9, 10, 11 therein

    Google Scholar 

  20. Jillie, D.W.: Interactions Between Coupled Thin-Film Microbridge Josephson Junctions, Ph. D. thesis. State University of New York at Stony Brook (1976) (The investigated long indium microbridge we refer to has a lengthL=123 µm, is 2.7 µm wide and 0.07 µm thick. The resistance at helium temperature isR 4.2K=9.6Ω, the mean free path is 900⋅10−10m, see Chap. 4.5 in [24])

  21. Kramer, L., Watts-Tobin, R.J.: Phys. Rev. Lett.40, 1041 (1978)

    Google Scholar 

  22. Yu, M.L., Mercereau, J.E.: Phys. Rev. B12, 4909 (1975)

    Google Scholar 

  23. Tinkham, M.: Phys. Rev. B6, 1747 (1972) Remark: The identification of the parameterα introduced in Eq. (25) of that work has to be corrected by a factor of 2, so that Eq. (28) reads:τ(T c )=(8.4αT 3 c )−1; that meansα=1/(τ Θ Θ 3). This leads to a change of Eq. (26), which now readsT *Θ(3τ Θ /8t)1/3. Thus the correct form of Eq. (27) ist(T c )≈((3/8)τ Θ )(Θ/T c )3. Moreover, the correct reading of Eq. (38) isτ Q =(2T c /Δ)τ(T c ) that meansτ Q =(2T c /Δ)(τ Θ /8.4)(Θ/T c )3. WithΔ(0)=1.76T c we getτ Q =0.14τ Θ (Θ/T c )3 (Δ(0)/Δ(T)) as the correct form of Eq. (38) Concerning these corrections see Ref. 10 in: Clarke, J., Eckern, U., Schmid, A., Schön, G., Tinkham, M.: Branch Imbalance Relaxation Times in Superconductors. (Preprint)

    Google Scholar 

  24. Langenberg, D.N.: Nonequilibrium Phenomena in Superconductivity, in: Proceedings of the 14th International conference on Low Temperature Physics, Otaniemi, Finland, Vol. 5, pp. 223–263. Krusius, M., Vuorio, M. (eds.) Amsterdam, Oxford: North Holland Publishing Company, New York: American Elsevier Publishing Company 1975

    Google Scholar 

  25. Tinkham, M.: Introduction to Superconductivity, 1st ed. Chap. 8-3.1. New York: Mc Graw Hill Book Company 1975

    Google Scholar 

  26. Kaplan, S.B., Chi, C.C., Langenberg, D.N., Chang, J.J., Jafarey, S., Scalapino, D.J.: Phys. Rev. B14, 4854 (1976)

    Google Scholar 

  27. As calculated by the BCS-theory. See Ref. 27, Remark to Eq. (38), and Ref. 29, pp. 34–35

  28. Kittel, C.: Einführung in die Festkörperphysik, 3rd ed. München: Verlag Oldenbourg, Frankfurt: John Wiley and Sons 1973

    Google Scholar 

  29. This parameter was introduced in order to describe the effect of impurities upon the critical temperature of anisotropic superconductors and is determined as 〈a 2〉=0.021 for indium: Markowitz, D., Kadanoff, D.: Phys. Rev.131, 563 (1963)

    Google Scholar 

  30. Roberts, B.W.: Properties of Selected Superconductive Materials, p. 10. Washington, D.C., 20234: US-Department of Commerce, National Bureau of Standards 1972

  31. See Ref. 28 and: Owen, C.S., Scalapino, D.J.: Phys. Rev. Lett.28, 1559 (1972)

    Google Scholar 

  32. Kramer, L.: private communication

  33. Tinkham, M., Clarke, J.: Phys. Rev. Lett.28, 1366 (1972)

    Google Scholar 

  34. Mapother, D.E.: Phys. Rev.126, 2021 (1962) (Remark: The correct inscription of the ordinate of Fig. 3 must be −0.01, −0.02, becauseD(t) has negative values. See Ref. 6 of that work: Shaw, R.W., Mapother, D.E., Hopkins, D.C.: Phys. Rev.120, 88 (1960)

    Google Scholar 

  35. Saint-James, D., Thomas, E.J., Sarma, G.: Type II Superconductivity, 1st ed. London: Pergamon Press 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tidecks, R., Slama, G. Breakdown of superconductivity in current-carrying indium whiskers. Z Physik B 37, 103–113 (1980). https://doi.org/10.1007/BF01365366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01365366

Keywords

Navigation