Skip to main content
Log in

Load-displacement properties of the thoracolumbar calf spine: Experimental results and comparison to known human data

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The availability of human cadaveric spine specimens for in vitro tests is limited and the risk of infection is now of vital concern. As an alternative or supplement, calf spines have been used as models for human spines, in particular to evaluate spinal implants. However, neither qualitative nor quantitative biomechanical data on calf spines are available for comparison with data on human specimens. The purpose of this study was to determine the fundamental biomechanical properties of calf spines and to compare them with existing data from human specimens. Range of motion, neutral zone, and stiffness properties of thoracolumbar calf spines (T6-L6) were determined under pure moment loading in flexion and extension, axial left/right rotation and right/left lateral bending. Biomechanical similarities were observed between the calf and reported human data, most notably in axial rotation and lateral bending. Range of motion in the lumbar spine in flexion and extension was somewhat less in the calf than that typically reported for the human, though still within the range. These results suggest that the calf spine can be considered on a limited basis as a model for the human spine in certain in vitro tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlgren BD, Vasavada MS, Brower RS, Lydon C, Herkowitz MD, Panjabi MM (1994) Anular incision technique on the strength and multidirectional flexibility of the healing intervertrebral disc. Spine 19:948–954

    Google Scholar 

  2. Allan DG, Russell GG, Moreau ML, Raso VJ, Budney D (1990) Vertebral end-plate failure in porcine and bovine model of spinal fracture instrumentation. J Orthop Res 8: 154–156

    Google Scholar 

  3. Asazuma T, Stokes IAF, Moreland MS, Suzuki N (1990) Intersegmental spinal flexibility with lumbosacral instrumentation — an in vitro biomechanical investigation. Spine 15: 1153–1158

    Google Scholar 

  4. Ashman RB, Birch JG, Bone LB, Corin JD, Herring JA, Johnston CE, Ritterbush JF, Roach JW (1988) Mechanical testing of spinal instrumentation. Clin Orthop 227:113–125

    Google Scholar 

  5. Brantigan JW, McAfee PC, Cunningham BW, Wang H, Orbegoso CM (1994) Interbody lumbar fusion using a carbon fiber cage implant versus allograft bone. An investigational study in the spanish goat. Spine 19:1436–1444

    Google Scholar 

  6. Cain JE, DeJont JT, Dinenberg AS, Stefko RM, Platenburg RC, Lauerman WC (1993) Pathomechanical analysis of thoracolumbar burst fracture reduction. A calf spine model. Spine 18: 1647–1654

    Google Scholar 

  7. Cotterill PC, Kostuik JP, D'Angelo G, Fernie GR, Maki BE (1986) An anatomical comparison of the human and bovine thoracolumbar spine. J Orthop Res 4: 298–303

    Google Scholar 

  8. Crisco JJ, Panjabi MM, Wang E, Price MA, Pelker RR (1990) The injured canine cervical spine after six months of healing. An in vitro three-dimensional study. Spine 15:1047–1052

    Google Scholar 

  9. Eggli S, Schläpfer F, Schneider E, Aebi M (1991) Assessment of a new load test device for measuring the rigidity of thoraco-lumbar fixation systems. Thirty-seventh Annual Meeting, Orthopaedic Research Society, February 13–16, Orlando, p 21

  10. Eggli S, Schläpfer F, Angst M, Witschger P, Aebi M (1992) Biomechanical testing of three newly developed transpedicular multisegmental fixation systems. Eur Spine J 1: 109–116

    Google Scholar 

  11. Farcy JP, Weidenbaum M, Michelsen CB, Hoeltzel DA, Athanasiou KA (1987) A comparative biomechanical study of spinal fixation using CotrelDubousset instrumentation. Spine 12: 877–881

    Google Scholar 

  12. Gaines W, Munson G, Satterlee C, Lising A, Betten R (1983) Harrington distraction rods supplemented with sublaminar wires for thoracolumbar fracture dislocation-experimental and clinical investigation. Scoliosis Research Society, p 15

  13. Gaines RW, Carson WL, Satterlee CC, Groh GI (1991) Experimental evaluation of seven different spinal fracture internal fixation devices using nonfailure stability testing. Spine 16:902–909

    Google Scholar 

  14. Goe1 VK, Winterbottom JM (1991) Experimental investigation of three-dimensional spine kinetics. Determination of optimal placement of markers. Spine 16:1000–1002

    Google Scholar 

  15. Goel VK, Goyal S, Clark C, Nishiyama K, Nye T (1985) Kinematics of the whole lumbar spine. Effect of discectomy. Spine 10: 543–554

    Google Scholar 

  16. Goel VK, Nye TA, Clark CR, Nishiyma K, Weinstein JN (1987) A technique to evaluate an internal spinal device by use of the Selspot system — An application to the Luque closed loop. Spine 12:150

    Google Scholar 

  17. Goodwin RR, James KS, Daniels AU, Dunn HK (1994) Distraction and compression loads enhance spine torsional stiffness. J Biomech 27:1049–1057

    Google Scholar 

  18. Gregersen GG, Lucas DB (1967) An in vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg [Am] 49:247–262

    Google Scholar 

  19. Gurr KR, McAfee PC, Shih C-M (1988a) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. J Bone Joint Surg [Am] 70:1182–1191

    Google Scholar 

  20. Gurr KR, McAfee PC, Shih C-M (1988b) Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. J Bone Joint Surg [Am] 70:680–691

    Google Scholar 

  21. Gurwitz GS, Dawson JM, McNamara MJ, Federspiel CF, Spengler DM (1993) Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. Spine 18:977–982

    Google Scholar 

  22. Heller JG, Zdeblick TA, Kunz DA, McCabe R, Cooke ME (1993) Spinal instrumentation for metastatic disease: in vitro biomechanical analysis. J Spinal Disord 6: 17–22

    Google Scholar 

  23. Johnston CE, Ashman RB, Sherman MC, Eberle MC, Herndon WA, Sullivan JA, King AGS, Burke SW (1987) Mechanical consequences of rod contouring and residual scoliosis in sublaminar segmental instrumentation. J Orthop Res 5:206–216

    Google Scholar 

  24. McAfee PC, Werner FW, Glisson RR (1985) A biomechanical analysis of spinal instrumentation systems in thoracolumbar fractures. Spine 10: 204–217

    Google Scholar 

  25. McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1991) The effect of spinal implant rigidity on vertebral bone density. A canine model. Spine [Suppl] 16: 190–197

    Google Scholar 

  26. Munson G, Satterlee C, Hammond S, Betten R, Gaines RW (1984) Experimental evaluation of Harrington rod fixation supplemented with wires in stabilizing thoracolumbar fracture-dislocations. Clin Orthop 189:97–102

    Google Scholar 

  27. Nagel DA, Kramers PC, Rahn BA, Cordey J, Perren SM (1991) A paradigm of delayed union and nonunion in the lumbosacral joint — a study of motion and bone grafting of the lumbosacral spine in sheep. Spine 16: 553–559

    Google Scholar 

  28. Nasca RJ, Lemons JE, Walker J, Batson S (1990) Multiaxis cyclic biomechanical testing of Harrington, Luque, and Drummond implants. Spine 15: 15–19

    Google Scholar 

  29. Nolte L-P, Steffen R, Krämer J, Jergas M (1993) Der Fixateur inteme: Eine vergleichende biomechanische Studie verschiedener Systeme. Aktuel Traumatol 23:20–26

    Google Scholar 

  30. Oxland TR, Panjabi MM, Southern EP, Duranceau JS (1991) An anatomic basis for spinal instability: a porcine trauma model. J Orthop Res 9:452–462

    Google Scholar 

  31. Oxland TR, Lin R-M, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10: 573–580

    Google Scholar 

  32. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices. I. A conceptual framework. Spine 13: 1129–1134

    Google Scholar 

  33. Panjabi MM, Krag MH, White AA, Southwick WO (1977) Effecs of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8:181–191

    Google Scholar 

  34. Panjabi MM, Abumi K, Duranceau J, Crisco JJ (1988) Biomechanical evaluation of spinal fixation devices. II. Stability provided by eight internal fixation devices. Spine 13:1135–1140

    Google Scholar 

  35. Panjabi MM, Abumi K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscle forces — a biomechanical model. Spine 14:194–200

    Google Scholar 

  36. Panjabi MM, Yamamoto I, Oxland TR, Crisco JJ, Freedman D (1991) Biomechnical stability of five pedicle screw fixation systems in a human lumbar spine instability model. Clin Biomech 6:197–205

    Google Scholar 

  37. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three dimensional load-displacement curves. J Bone Joint Surg [Am] 76:413–424

    Google Scholar 

  38. Pintar FA, Maiman DJ, Hollowell JP, Yoganandan N, Droese KW, Reinartz JM, Cuddy B (1994) Fusion rate and biomechanical stiffness of hydroxylap atite versus autogenous bone grafts for anterior discectomy: an in vivo animal study. Spine 19:2524–2528

    Google Scholar 

  39. Plamondon A, Gagnon M, Maurais G (1988) Application of a stereographic method for the study of intervertebral motion. Spine 13:1027–1032

    Google Scholar 

  40. Ritterbusch JF, Ashman RB, Roach JW, Johnston CE, Birch JG, Herring JA (1983) Biomechanical comparisons of spinal instrumentation systems. Scohosis Research Society, p 87

  41. Sawa A, Mayfield J, Koeneman J, Winters J (1991) CD pedicle screw spinal instrumentation stiffness and 3-D motion analysis. Final program. Combined Meeting, Orthopedic Research Societies of USA, Japan, Canada

  42. Schultz AB, Warwick DN, Berkson MH, Nachemson AL (1979) Mechanical properties of human lumbar spine motion segments. J Biomech Eng 101: 46–52

    Google Scholar 

  43. Shirado O, Zdeblick TA, McAfee PC, Warden KE (1991) Biomechanical evaluation of methods of posterior stabilization of the spine and posterior lumbar interbody arthrodesis for lumbosacral isthmic spondylolisthesis — a calf spine model. J Bone Joint Surg [Am] 73:518–526

    Google Scholar 

  44. Shono Y, Kaneda K, Yamamoto I (1991) A biomechanical analysis of Zielke, Kaneda, and Cotrel-Dubousset instrumtations in thoracolumbar scoliosis. A calf spine model. Spine 16: 1305–1311

    Google Scholar 

  45. Shono Y, McAfee PC, Cunningham BW, Brantigan JW (1993) A biomechanical analysis of decompression and reconstruction methods in the cervical spine. Emphasis on a carbon-fibercomposite cage. J Bone Joint Surg [Am] 75:1674–1684

    Google Scholar 

  46. Slater R, Nagel D, Smith RL (1988) Biochemistry of fusion mass consolidation in the sheep spine. J Orthop Res 6:138–144

    Google Scholar 

  47. Smith MD, Kotzar G, Yoo J, Bohlmann H (1993) A biomechanical analysis of atlantoaxial stabilization methods using a bovine model. Clin Orthop 290:285–295

    Google Scholar 

  48. Spivak JM, Neuwirth MG, Labiak JJ, Kummer FJ, Ricci JL (1994) Hydroxyapatite enhancement of posterior spinal instrumentation fixation. Spine 19: 955–964

    Google Scholar 

  49. Sutterlin CE, McAfee PC, Warden KE, Rey RM, Farey ID (1988) A biomechanical evaluation of cervical spinal stabilization methods in a bovine model — static and cyclical loading. Spine 13:795–802

    Google Scholar 

  50. Swartz DE, Wittenberg HR, Shea M, White AA, Hayes WC (1991) Physical and mechanical properties of calf lumbosacral trabecular bone. J Biomech 24:1059–1068

    Google Scholar 

  51. Vazquez-Seonae P, Yoo J, Zou D, Fay LA, Fredrickson BE, Handal JC, Yuan HA, Edwards WT (1993) Interference screw fixation of cervical grafts - a combined in vitro biomechanical and in vivo animal study. Spine 18: 946–954

    Google Scholar 

  52. Vuono-Hawkins M, Zimmerman MC, Carter FM, Parsons JR, Langrana NA (1994) Mechanical evaluation of a canine intervertebral disc spacer: in situ and in vivo studies. J Orthop Res 12: 119–127

    Google Scholar 

  53. Wenger D, Wauters K, Herring J, Carollo J (1981) Comparative mechanics of segmental spinal instrumentation versus traditional Harrington instrumentation in scoliosis treatment. Scoliosis Research Society, p 16

  54. Wenger DR, Carollo JJ, Wilkerson JA, Wauters K, Herring JA (1982) Laboratory testing of segmental spinal instrumentation versus traditional Harrington instrumentation for scoliosis treatment. Spine 7:265–269

    Google Scholar 

  55. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott, Philadelphia

    Google Scholar 

  56. Wilke H-J, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine 13:91–97

    Google Scholar 

  57. Wilke H-J, Ostertag G, Claes L (1994) Three-dimensional goniometer linkage system for the analysis of movements with six degrees of freedom. Biomed Tech 39:149–155

    Google Scholar 

  58. Wilke H-J, Wolf S, Clues LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. Spine 20:192–198

    Google Scholar 

  59. Wilke H-J, Naumann T, Kluger P, Kron T, Claes LE, Puhl W (1996) In situ rigidity of a new sliding rod for management of the growing spine in Duchenne muscular dystrophy. Spine 21:1957–1961

    Google Scholar 

  60. Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16: 647–652

    Google Scholar 

  61. Wittenberg RH, Shea M, Edwards WT, Swartz DE, White AA, Hayes WC (1992) A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model. Spine [Suppl] 17:121–128

    Google Scholar 

  62. Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14: 1256–1260

    Google Scholar 

  63. Zdeblick TA, Wisconsin M, Shirado O, McAfee PC, DeGroot H, Warden KE (1991a) Anterior spinal fixation after lumbar corpectomy — a study in dogs. J Bone Joint Surg [Am] 73:527

    Google Scholar 

  64. Zdeblick TA, Zou D, Warden KE (1991 b) Cervical stability following foraminotomy — a biomechanical invitro analysis. Thirty-seventh Annual Meeting, Orthopaedic Research Society, February 13–16, Orlando, p 629

  65. Zdeblick TA, Warden KE, Zou MD, McAfee PC, Abitbol JJ (1993) Anterior spinal fixators. Spine 18:513–517

    Google Scholar 

  66. Zimmermann MC, Vuono-Hawkins M, Parsons JR, Carter FM, Gutteling E, Lee CK, Langrana NA (1992) The mechanical properties of the canine lumbar disc and motion segment. Spine 17:213–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. -J. Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, H.J., Krischak, S.T., Wenger, K.H. et al. Load-displacement properties of the thoracolumbar calf spine: Experimental results and comparison to known human data. Eur Spine J 6, 129–137 (1997). https://doi.org/10.1007/BF01358746

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01358746

Key words

Navigation