Skip to main content
Log in

Unmixing of binary alloys by a vacancy mechanism of diffusion: a computer simulation

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The initial stages of phase separation are studied for a model binary alloy (AB) with pairwise interactions ε AA , ε AB , ε BB between nearest neighbors, assuming that there is no direct interchange of neighboring atoms possible, but only an indirect one mediated by vacancies (V) occurring in the system at a concentrationc v and which are strictly conserved, as are the concentrationsc A andc B of the two species.A-atoms may jump to vacant sites with jump rateГ A , B-atoms with jump rateГ B (in the absence of interactions). Particular attention is paid to the question to what extent nonuniform distribution of vacancies affects the unmixing kinetics. Our study focuses on the special caseГ A =Г B on a square lattice, considering three different choices of interactions with the same ε=ε AB − (ε AA BB )/2: (i) ε AB =ε, ε AA = ε BB = 0; (ii) ε AA = 0, ε AA = ε BB ; = ∓ ε; (iii) ε AB = ε BB = 0, ε AA = −2ε. We obtain both the time evolution of the structure factorS(k,t) following a quench from infinite temperature to the considered temperature, and the timedependence of the mean cluster size and the various neighborhood probabilities of a vacancy. While in case (i) forc V ≦0.16 the distribution of vacancies in the system stays nearly random, in case (ii) the vacancies cluster in theA-B interfacial region, and in case (iii) they get nearly completely expelled from theA-rich regions. While phase separation proceeds in case (i) only slightly faster than in case (ii), a significant slowing down of the relaxation is observed for case (iii), which shows up in a strong reduction of the effective exponents describing the growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For recent reviews, see Gunton, J.D., San Miguel, M., Sahni, P.S.: In: Phase transitions and critical phenomena, Domb, C., Lebowitz, J.L. (eds.), Vol. 8, p. 267 London: Academic Press 1983 (and Refs. 2–4)

    Google Scholar 

  2. Binder, K.. In: Alloy phase stability. Gonis, A., Stocks, L.M. (eds.), p. 232. Dordrecht: Kluwer Akad. Publ. 1989

    Google Scholar 

  3. Binder, K.. In: Phase transformations in materials. Haasen, P. (ed.), Chap. 7. Weinheim: VCH Verlagsgesellschaft (in press)

  4. Komura, S., Furukawa, H. (eds.): Dynamics of ordering processes in condensed matter. New York: Plenum Press 1988

    Google Scholar 

  5. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys.28, 258 (1958);31 688 (1959)

    Google Scholar 

  6. Cahn, J.W.: Acta Metall.9, 795 (1961); Cook, H.E.: Acta Metall.18, 297 (1970)

    Google Scholar 

  7. Langer, J.S., Baron, M., Miller, H.D.: Phys. Rev. A11, 1417 (1975), and references therein

    Google Scholar 

  8. Bortz, A.B., Kalos, M.H., Lebowitz, J.L., Zendejas, M.A.: Phys. Rev. B10, 535 (1974)

    Google Scholar 

  9. Marro, J., Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: Phys. Rev. B12, 2000 (1975)

    Google Scholar 

  10. Marro, J., Lebowitz, J.L., Kalos, M.H.: Phys. Rev. Lett.43, 282 (1979)

    Google Scholar 

  11. Lebowitz J.L., Marro, J., Kalos, M.H.: Acta Metall.30, 297 (1982)

    Google Scholar 

  12. Heermann, D.W.: Phys. Rev. Lett.52, 1126 (1984)

    Google Scholar 

  13. Hayward, S., Heermann, D.W., Binder, K.: J. Stat. Phys.49, 1053 (1987)

    Google Scholar 

  14. Amar, J.G., Sullivan, F.E., Mountain, R.D.: Phys. Rev. B37, 196 (1988)

    Google Scholar 

  15. Binder, K.. In: Festkörperprobleme-Advances in solid state physics. Grosse, P. (Ed.), Vol. 26, p. 133 Braunschweig: Vieweg 1986

    Google Scholar 

  16. Schweika, W.: Preprint

  17. Kawasaki, K.: In: Phase transitions and critical phenomena. Domb, C., Green, M.S. (eds.), Vol. 2, Chap. 11. London: Academic Press 1972

    Google Scholar 

  18. Manning, J.R.: Diffusion kinetics for atoms in crystals. Princeton: Van Nestrand 1968

    Google Scholar 

  19. Flynn, C.P.: Point defects and diffusion. Oxford: Clarendon Press 1972

    Google Scholar 

  20. Yaldram, K., Binder, K.: Acta Metall. (in press)

  21. Yaldram, K., Binder, K.: J. Stat. Phys. (in press)

  22. Onsager, L.: Phys. Rev.65, 117 (1944)

    Google Scholar 

  23. Blume, M., Emery, V.J., Griffiths, R.B.: Phys. Rev. A4, 1071 (1971)

    Google Scholar 

  24. Binder, K., Heermann, D.W.: Monte Carlo simulations in statistical physics—an Introduction. Berlin, Heidelberg, New York, Tokyo: Springer 1988

    Google Scholar 

  25. Selke, W., Yeomans, J.: J. Phys. A16, 2789 (1983)

    Google Scholar 

  26. Lifshitz, I.M., Slyozov, V.V.: J. Phys. Chem. Solids19, 35 (1961)

    Google Scholar 

  27. Binder, K., Heermann, D.W.: In: Scaling phenomena in disordered systems. Pynn, R., Skjeltorp, A. (eds.), p. 225. New York: Plenum Press 1985

    Google Scholar 

  28. Mouritsen, O.G., Shah, P.J.: Phys. Rev. B41, 7003 (1990)

    Google Scholar 

  29. Selke, W.: Ber Bunsenges. Phys. Chem.90, 232 (1986); Riyan, P., Selke, W.; Uimin, G.: Z. Phys. B — Condensed Matter65, 235 (1986); Selke, W., Yeomans, J.: J. Phys. A16, 2789 (1983); Selke, W., Huse, D.A.: Z. Phys. B — Condensed Matter50, 113 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaldram, K., Binder, K. Unmixing of binary alloys by a vacancy mechanism of diffusion: a computer simulation. Z. Physik B - Condensed Matter 82, 405–418 (1991). https://doi.org/10.1007/BF01357187

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01357187

Keywords

Navigation