Skip to main content
Log in

Gracile nucleus of streptozotocin-induced diabetic rats

  • Published:
Journal of Neurocytology

Summary

This study reports ultrastructural changes in the gracile nucleus of male Wistar rats after streptozotocin-induced diabetes. During the acute phase (3–7 days) degenerating electron-dense dendrites and axon terminals were dispersed in the neuropil. Degenerating dendrites were characterized by an electron-dense cytoplasm, swollen mitochondria, dilated endoplasmic reticulum and scattered ribosomes. Degenerating axon terminals were characterized by an electron-dense cytoplasm and clustering of small spherical agranular vesicles. Degenerating axon terminals may form part of a synaptic glomerulus with a central electron-dense dendrite, or they may form the central element of a synaptic glomerulus. These degenerating profiles were absent in the gracile nucleus of the 3 and 7 days insulin-treated post-streptozotocin rats. Macrophages were present in the neuropil and were in the process of engulfing neuronal elements. During the medium phase (1–6 months), most of the degenerating dendrites and axon terminals had been engulfed or removed by macrophages. During the late phase (9–12 months) a second wave of degeneration occurred in the gracile nucleus, similar to the acute phase. During the medium and late phases, dystrophic axonal profiles were also significantly increased in the rats after streptozotocin treatment.

It is concluded that the ultrastructural changes observed in the gracile nucleus in the present study were the result of streptozotocin-induced diabetes rather than a toxic effect of streptozotocin, even in the acute phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright, B. C., Brown, M. R. &Knull, H. R. (1990) Dystrophic changes in terminals in the gracile nucleus in streptozotocin diabetic rats.Anatomical Record 226, 6A.

    Google Scholar 

  • Brosky, G. &Logothetopoulos, J. (1969) Streptozotocin diabetes in the mouse and guinea pig.Diabetes 18, 606–11.

    Google Scholar 

  • Clark, H. B. &Schmidt, R. E. (1984) Identification of dystrophic sympathetic axons in experimental diabetic autonomic neuropathy.Brain Research 293, 390–5.

    Google Scholar 

  • Ellis, L. C. &Rustioni, A. (1981) A correlative HRP, Golgi and EM study of the intrinsic organization of the feline dorsal column nuclei.Journal of Comparative Neurology 197, 341–67.

    Google Scholar 

  • Havrankova, J., Roth, J. &Brownstein, M. (1978a) Insulin receptors are widely distributed in the central nervous system of the rat.Nature 272, 827–9.

    Google Scholar 

  • Havrankova, J., Schmechel, D., Roth, J. &Brownstein, M. (1978b) Identification of insulin in rat brain.Proceedings of the National Academy of Sciences (USA) 75, 5737–41.

    Google Scholar 

  • Hendricks, S. A., Agardh, C. D., Taylor, S. I. &Roth, J. (1984) Unique features of the insulin receptor in the rat brain.Journal of Neurochemistry 43, 1302–9.

    Google Scholar 

  • Jakobsen, J. (1979) Early and preventable changes of peripheral nerve structure and function in insulin-deficient diabetic rat.Journal of Neurology, Neurosurgery and Psychiatry 42, 509–18.

    Google Scholar 

  • Jakobsen, J. &Lundbaek, K. (1976) Neuropathy in experimental diabetes: an animal model.British Medical Journal 2, 278–9.

    Google Scholar 

  • Jakobsen, J. &Sidenius, P. (1980) Decreased axonal transport of structural proteins in streptozotocin diabetic rats.Journal of Clinical Investigation 66, 292–7.

    Google Scholar 

  • Junod, A., Lambert, A. E., Orci, L., Pictet, R., Caret, A. E. &Renold, A. E. (1967) Studies on the diabetogenic action of streptozotocin.Proceedings of the Society for Experimental Biology and Medicine 126, 201–5.

    Google Scholar 

  • Kniel, P. C., Junker, U., Perrin, I. V., Bestetti, G. E. &Rossi, G. L. (1986) Varied effects on experimental diabetes on the autonomic nervous system of the rat.Laboratory Investigation 54, 523–30.

    Google Scholar 

  • Kolb-Bachofen, V., Epstein, S., Kiesel, U. &Kolb, H. (1988) Low-dose streptozotocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset.Diabetes 37, 21–7.

    Google Scholar 

  • Lazarus, S. A. &Shapiro, S. H. (1972) Streptozotocin-induced diabetes and islet cell alterations in rabbits.Diabetes 21, 129–37.

    Google Scholar 

  • Like, A. A., Appel, M. C., Williams, R. M. &Rossini, A. A. (1978) Streptozotocin-induced pancreatic insulitis in mice.Laboratory Investigation 38, 470–86.

    Google Scholar 

  • Longo, F. M., Powell, H. C., Lebeau, J., Gerrero, M. R., Heckman, H. &Myers, R. R. (1986) Delayed nerve regeneration in streptozotocin diabetic rats.Muscle and Nerve 9, 385–93.

    Google Scholar 

  • Maclaren, N. K., Neufeld, M., McLaughlin, J. V. &Taylor, G. (1980) Androgen sensitization of streptozotocin-induced diabetes in mice.Diabetes 29, 710–16.

    Google Scholar 

  • Medori, R., Autilio-Gambetti, L., Monaco, S. &Gambetti, P. (1985) Diabetic neuropathy: a new type of neurofilamentous axonopathy?Journal of Neuropathology and Experimental Neurology 44, 345 (Abstract).

    Google Scholar 

  • Mendell, J. R., Sahenk, Z., Warmolts, J. R., Marshall, J. K. &Thibert, P. (1981) The spontaneously diabetic BB Wistar rat. Morphologic and physiologic studies of peripheral nerve.Journal of the Neurological Sciences 52, 103–15.

    Google Scholar 

  • Monckton, G. &Pehowich, E. (1982) The effects of intermittent insulin therapy on the autonomic neuropathy in streptozotocin diabetic rat.Canadian Journal of Neurological Sciences 9, 79–84.

    Google Scholar 

  • Pitkin, R. M. &Reynolds, W. A. (1970) Diabetogenic effects of streptozotocin in rhesus monkeys.Diabetes 19, 85–90.

    Google Scholar 

  • Raizada, M. K. (1983) Localization of insulin-like immuno-reactivity in neurons from primary cultures of rat brain.Experimental Cell Research 143, 351–7.

    Google Scholar 

  • Raizada, M. K., Boyd, F. T., Clarke, D. W. &Leroith, D. (1987) Physiologically unique insulin receptors on neuronal cells. InInsulin, Insulin-like Growth Factors and their Receptors in the Central Nervous System (edited byRaizada, M. K. &Phillips, M. I.) pp. 191–200. New York & London: Plenum Press.

    Google Scholar 

  • Rustioni, A. (1973) Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat.Brain Research 58, 81–95.

    Google Scholar 

  • Rustioni, A. &Sotelo, C. (1974) Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibres and cortical afferents.Journal of Comparative Neurology 155, 441–68.

    Google Scholar 

  • Schein, P. S., Alberti, K. G. M. M. &Williamson, D. J. (1971) Effects of streptozotocin on carbohydrate and lipid metabolism in the rat.Endocrinology 89, 827–34.

    Google Scholar 

  • Schmidt, R. E., Nelson, J. S. &Johnson, E. M. Jr. (1981) Experimental diabetic autonomic neuropathy.American Journal of Pathology 103, 210–25.

    Google Scholar 

  • Schmidt, R. E. &Plurad, S. B. (1986) Ultrastructural and biochemical characterization of autonomic neuropathy in rats with chronic streptozotocin diabetes.Journal of Neuropathology and Experimental Neurology 45, 525–44.

    Google Scholar 

  • Schmidt, R. E., Plurad, S. B. &Modert, C. W. (1983a) Experimental diabetic autonomic neuropathy characterization in streptozotocin-diabetic Sprague-Dawley rats.Laboratory Investigation 5, 538–52.

    Google Scholar 

  • Schmidt, R. E., Plurad, S. B., Olack, B. J. &Scharp, D. W. (1983b) The effect of pancreatic islet transplantation and insulin therapy on experimental diabetic autonomic neuropathyDiabetes 32, 532–40.

    Google Scholar 

  • Schmidt, R. E., Plurad, D. A. &Roth, K. A. (1988) Effects of chronic experimental streptozotocin-induced diabetes on the noradrenergic and peptidergic innervation of the rat alimentary tract.Brain Research 458, 353–60.

    Google Scholar 

  • Schmidt, R. E. &Scharp, D. W. (1982) Axonal dystrophy in experimental diabetic autonomic neuropathy.Diabetes 31, 761–70.

    Google Scholar 

  • Sharma, A. K., Bjada, S. &Thomas, P. K. (1981) Influence of streptozotocin-induced diabetes on myelinated nerve fibre maturation and on body growth in the rat.Acta Neuropathologica 53, 257–65.

    Google Scholar 

  • Sharma, A. K. &Thomas, P. K. (1974) Peripheral nerve structure and function in experimental diabetes.Journal of the Neurological Sciences 23, 1–15.

    Google Scholar 

  • Sima, A. A. F. &Yagihashi, S. (1986) Central-peripheral distal axonopathy in the spontaneously diabetic BB-rat: ultrastructural and morphometric findings.Diabetes Research and Clinical Practice 1, 289–98.

    Google Scholar 

  • Tan, C. K. &Wong, W. C. (1982) The structure and connections of the dorsal column nuclei. InProgress in Anatomy (edited byHarrison, R. J. &Navaratnam, V.) Vol. 2, pp. 161–77. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tay, S. S. W. &Wong, W. C. (1988) Ultrastructural changes in the gracile nucleus of streptozotocin-treated diabetic rats.Anatomical Record 220, 95A.

    Google Scholar 

  • Yagihashi, S. &Sima, A. A. F. (1985) Diabetic autonomic neuropathy. The distribution of the structural changes in the sympathetic nerves of the BB-rat.American Journal of Pathology 121, 138–47.

    Google Scholar 

  • Yagihashi, S. &Sima, A. A. F. (1986) Neuroaxonal and dendritic dystrophy in diabetic autonomic neuropathy. Classification and topographic distribution in the BB-rat.Journal of Neuropathology and Experimental Neurology 45, 545–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tay, S.S.W., Wong, W.C. Gracile nucleus of streptozotocin-induced diabetic rats. J Neurocytol 20, 356–364 (1991). https://doi.org/10.1007/BF01355532

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01355532

Keywords

Navigation