Skip to main content
Log in

Review of the multiple chemical exposure factors which may disturb human behavioral development

Übersicht über die mehrfachen chemischen Expositions-Faktoren, welche die menschliche Verhaltensentwicklung stören können

Revue sur les multiples facteurs d'exposition chimique pouvant perturber le développement comportemental humain

  • Published:
Sozial- und Präventivmedizin

Summary

Previous research both in humans and laboratory animals provides evidence that prenatal exposure to metals, pollutants and drugs may impair the neurobehavioral development of the offspring. This may induce mental and psychomotor disturbances as well as learning behavioral and sensory disorders. However proff for a strict causality between some low-level exposures to chemcials and behavioral developmental dysfunctions, is often considered still not to be established. The pertinent studies on neurobehavioral development toxicity of individual substances (lead, cadmium, organic solvents, PCBs, alcohol nicotine, diazepam) are reviewed, and the methodologies and conclusions, the missing aspects and the existing problems which still need to be solved in further studies, are discussed. In addition, the necessity of undertaking a broad prospective cohort study on multifactorial influences on the behavioral development of children is emphasized.

Zusammenfassung

Frühere Untersuchungen sowohl am Menschen als auch am Labortier zeigten, dass vorgeburtliche Exposition auf Metalle, Umweltstoffe, Drogen und Medikamente die Entwicklung des Nervensystemes und des Verhaltens von Kindern stören können. Dies kann Störungen der geistigen und psychomotorischen Entwicklung sowie Lern-, Verhaltens- und Wahrnehmungstörungen bewirken. Trotzdem wird oft angenommen, dass ein Beweis für eine strikte Kausalität zwischen gewissen geringfügigen Expositionen auf Chemikalien und Dysfunktionen der Verhaltensentwicklung noch nicht erbracht worden sei. Die relevanten Studien über die Toxizität individueller Substanzen (Blei, Cadmium, organische Lösungsmittel, PCBs, Alkohol, Nikotin, Diazepam) auf die Entwicklung des Nervensystemes und das Verhalten sind zusammengefasst, und die Methoden, Schlussfolgerungen, die fehlenden Aspekte und bestehenden Probleme, welche durch weitere Studien gelöst werden sollten, werden besprochen. Zudem wird die Notwendigkeit hervorgehoben, dass eine breite prospektive Kohortenstudie über die multifaktoriellen Einflüsse auf die Verhaltensentwicklung von Kindern durchgeführt werden sollte.

Résumé

Des travaux de recherche sur les humains et sur des animaux de laboratoire ont livré de l'évidence que l'exposition prénatale à des métaux, des poluants, des droges et des médicaments peut déranger le développement du système nerveux et du comportement des enfants. Ceci peut inclure des perturbations du développement mental et psychomoteur, ainsi que des dérangements de l'apprentissage, du comportement et de la perception. Toutefois, il est souvent admis que la preuve n'a toujours pas été établie qu'il existe une causalité stricte entre l'exposition à bas niveau à certains produits chimiques et des dérangements du développement comportemental. Des études importantes sur la toxicité de certaines substances (plomb, cadmium, dissolvants organiques, PCBs, alcohol, nicotine, diazepam) sur le développement du système nerveux et du comportement sont présentés et les méthodologies, les conclusions, les aspects manquants et les problèmes existants qui doivent être résolus par des études futures, sont discutés. En plus, on insiste sur la nécessité d'entreprendre une large étude prospective cohorte sur les influences multifactorielles sur le développement comportemental des enfants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mello NK. Behavioral toxicology: a developing discipline. Fed Proc 1975;34: 1832–1834.

    Google Scholar 

  2. Anger WK. Human neurobehavioral toxicology testing. In: Russell RW, Ebert Flattau P, Pope AM, ed. Behavioral Measures of Neurotoxicity. Washington, D.C.: National Academy Press, 1990: 69–78.

    Google Scholar 

  3. Grant L, Davis JM. Effects of low level lead exposure on paediatric neurobehavioral development: current findings and future direction. In: Smith MA, Grant LD, Sors AI, ed. Lead exposure and child development: An international assessment. London: Kluwer Academic Publishers, 1989: 49–115.

    Google Scholar 

  4. Winneke G. Neurobehavioral Toxicity of Selected Environmental Chemicals: Clinical and Subclinical Aspects. In: RW. R., PE. F., AM. P, ed. Behavioral Measures of Neurotoxicity. Washington, D.C.: National Academy Press, 1990: 231.

    Google Scholar 

  5. Davis JM, Svendsgaard DJ. Lead and child development. Nature 1987;329: 297–300.

    Google Scholar 

  6. U.S. Environmental Protection Agency. Air quality criteria for lead. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; EPA report, 1986; No. EPA-600/8-83/028aF-dF. 4v. Available from NTIS, Springfield, VA: PB-87-142378.

  7. U.S. Environmental Protection Agency. Supplement to the 1986 EPA air quality criteria for lead-volume I addendum. Washington, DC: Office of Research and Development. Office of Health and Assessment, Environmental Criteria and Assessment Office; EPA report, 1989; p. A1-67, No. EPA-600/8-89/049A. Available from NTIS, Springfield, VA: PB-89-181374/AS.

  8. Bellinger D, Sloman J, Leviton A, Waternaux C, Needleman H, Rabinowitz M. Low-level lead exposure and child development: assessment at age 5 of a cohort followed from birth. In: Lindberg SE, Hutchinson TC, ed. International conference: Heavy metals in the environment. New Orleans: CEP Consultants, Ltd., 1987: 49–53.

    Google Scholar 

  9. McMichael AJ, Baghurst PA, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ. Port Pirie cohort study: environmental exposure to lead and children's abilities at the age of four years. N Engl J Med 1988;319; 468–475.

    Google Scholar 

  10. Morrow-Tlucak M, Ernhart CB. The relationship of low level lead exposure and language development in the pre-school years. In: Linberg SE, Hutchinson TC, ed. International conference: Heavy metals in the environment. Edinburgh: CEP Consultants, Ltd., 1987;1: 57–59.

    Google Scholar 

  11. David OJ, Clark J, Hoffman S. Childhood lead poisoning: a reevaluation. Arch Environ Health 1979;34: 106–111.

    Google Scholar 

  12. David OJ, Katz S, Arcoleo CG, Clark J. Chelation therapy in children as treatment of sequelae in severe lead toxicity. Arch Environ Health 1985;40: 109–113.

    Google Scholar 

  13. Smith M. Recent work on low level lead exposure and its impact on behavior, intelligence, and learning: a review. J Am Acad Child Psychiatry 1985;24: 24–32.

    Google Scholar 

  14. Gittelman R, Eskenazi B. Lead and hyperactivity revisited: an investigation of nondisadvantaged children. Arch Gen Psychiatry 1983;40: 827–833.

    Google Scholar 

  15. Davis JM, Otto DA, Well DE, Grant LD The comparative developmental neurotoxicity of lead in humans and animals. Neurotoxicol Teratol 1990;12: 215–229.

    Google Scholar 

  16. Dobbing J, Sands J. Vulnerability of the developing brain: The effect of nutritional growth retardation on the timing of the brain growth spurt. Biol Neonate 1971;19: 363–378.

    Google Scholar 

  17. Kostial K, Kargacin B, Landeka M. Influence of dietary ingredients on the body retention of strontium, cadmium, and mercury in suckling rats. Toxicol Lett 1984;23: 163–168.

    Google Scholar 

  18. Kullander S, Kallen B. A prospective study of smoking and pregnancy. Acta Obstet Gynecol Scand 1971;50: 83–94.

    Google Scholar 

  19. Webster WS. Cadmium-induced fetal growth retardation in the mouse. Arch Environ Health 1978;33: 36–42.

    Google Scholar 

  20. Murthy L, Rice DP, Petering HG. Sex differences with respect to the accumulation of oral cadmium in rats. In: Kirchgessner M, ed. Trace element metabolism in man and animals. Freising Weihenstephan, West Germany: Technical University of Munich Press, 1978: 557–561.

    Google Scholar 

  21. Rafales LS. Assessment of locomotor activity. In: Annau Z, ed. Behavioral toxicology. Baltimore: The Johns Hopkins University Press, 1986: 54–65.

    Google Scholar 

  22. Smith MJ, Garber B, Pihl RO. Altered behavioral response to apomorphine in cadmium exposed rats. Neurobehav Toxicol Teratol 1983;5: 161–165.

    Google Scholar 

  23. Weigel HJ, Elmadfa I, Jagar HJ. The effect of low doses of dietary cadmium oxide on the disposition of trace elements (zinc, copper, iron), hematological parameters, and liver functions in rats. Arch Environ Contam Toxicol 1984;13: 289–296.

    Google Scholar 

  24. Bremner I. Heavy metal toxicities. Q Rev Biophys 1974;55: 75–124.

    Google Scholar 

  25. Kulig BM. Methods and issues in evaluating the neurotoxic effects of organic solvents. In: Russell RW, Ebert Flattau P, Pope AM, ed. Behavioral Measures of Neurotoxicity. Washington, D.C. National Academy Press, 1990: 159–160.

    Google Scholar 

  26. Mcmillan DE. Risk assessment for neurobehavioral toxicity. Environ Health Perspect 1987;76: 155–161.

    Google Scholar 

  27. Søborg PA. Report on a conference on organic solvents and the nervous system. Neurotoxicol Teratol 1992;14: 81–82.

    Google Scholar 

  28. Hotz P, Tschopp A, Söderström D, Holtz J, Boillat MA, Gutzwiller F. Smell or taste disturbances, neurological symptoms, and hydrocarbon exposure. Int Arch Occup Environ Health 1992;63: 525–530.

    Google Scholar 

  29. Nelson BK. Behavioral teratology of industrial solvents. In: Edward PR, Vorhees CV, ed. Handbook of behavioral teratology. New York and London: Plenum Press, 1986: 391–401.

    Google Scholar 

  30. Hansen LG. Environmental toxicology of PCBs. In: Safe S, Hutzinger O, ed. Mammalian and Environmental Toxicology, Berlin Heidelberg New York: Springer-Verlag, 1987: 16–32. (Safe S, ed. Environmental Toxin Series; vol 1).

    Google Scholar 

  31. Jensen AA. Level and trends of environmental chemicals in human milk. In: Jensen AA, Slorach SA, ed. Chemical Contaminants in Human Milk. United States: CRC Press, 1991: 45–198.

    Google Scholar 

  32. Funatsu I, Yamashita F, Ito Y, et al. Polychlorbiphenyls (PCB)-induced fetopathy. Kurame Med J 1972;19: 43–51.

    Google Scholar 

  33. Wong KC, Hawang MY. Children born to PCB poisoned mothers. Clin Med (Taipei) 1981;7: 83–87.

    Google Scholar 

  34. Tilson HA, Jacobson JL, Rogan WJ. Polychlorinated biphenyls and the developing nervous system: cross-species comprison. Neurotoxicol Teratol 1990;12: 239–248.

    Google Scholar 

  35. Jacobson JL, Jacobson SW, Humphrey HB. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol 1990;12: 319–326.

    Google Scholar 

  36. Streissguth AP, Landesman-Dwyer S, Martin JG, Smith DW. Teratogenetic effects of alcohol in humans and laboratory animals. Science 1980;209: 353–361.

    Google Scholar 

  37. Abel EL. Fetal alcohol syndrome and fetal alcohol effects. New York: Plenum Press, 1984.

    Google Scholar 

  38. Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet 1973;2: 999–1001.

    Google Scholar 

  39. Streissguth AP, Barr HM, Sampson PD, Parrish-Johnson JC, Kirchner GL, Martin DC. Attention, distraction and reaction time at age 7 years and prenatal alcohol exposure. Neurobehav Toxicol Teratol 1986;8: 717–725.

    Google Scholar 

  40. Streissguth AP, Martin DC, Barr HM. The Seattle longitudinal prospective study on alcohol and pregnancy. Neurobehav Toxicol Teratol 1981;3: 223–233.

    Google Scholar 

  41. Streissguth AP, Barr HM, Martin DC. Alcohol exposure in utero and functional deficits in children during the first four years of life. In: Porter R, O'Connor M, Whelan J, ed. Mechanisms of Alcohol Damage in Utero. London: Pitman, 1984: 254–274.

    Google Scholar 

  42. Streissguth AP. The behavioral teratology of alcohol: performance, behavioral, and intellectual deficits in prenatally exposed children. In: West JR, ed. Alcohol and brain development. New York: Oxford University Press, 1986: 3–44.

    Google Scholar 

  43. Coles CD, Brown RT, Smith IE, Platzman KA, Erickson S, Falek A. Effects of prenatal alcohol exposure at school age. I. Phsical and cognitive development. Neurotoxicol Teratol 1991;13: 357–367.

    Google Scholar 

  44. Brown RT, Coles CD, Smith IE, et al. Effects of prenatal alcohol exposure at school age. II. Attention and behavior. Neurotoxicol Teratol 1991;13: 49–55.

    Google Scholar 

  45. Boyd TA, Ernhart CB, Greene TH, Sokol RJ, Matier S. Prenatal alcohol exposure and sustained attention in the preschool years. Neurotoxicol Teratol 1991;13: 49–55.

    Google Scholar 

  46. Meyer LS, Riley EP, Behavioral teratology of alcohol. In: Edward PR, Vorhees CV, ed. Handbook of behavioral teratology. New York and London: Plenum Press, 1987: 101–134.

    Google Scholar 

  47. Adams J. Clinical relevance of experimental behavioral teratology. Neurotoxicology 1986;7: 19–34.

    Google Scholar 

  48. Hannigan JH, Blanchard BA, Horner MP, Riley EP, Pilati ML. Apomorphine-induced motor behavior in rats exposed prenatally to alcohol. Neurotoxicol Teratol 1990;12: 79–84.

    Google Scholar 

  49. Barron S, Riley EP. Passive avoidance performance following neonatal alcohol exposure. Neurotoxicol Teratol 1990;12: 135–138.

    Google Scholar 

  50. Driscoll CD, Streissguth AP, Riley EP. Prenatal alcohol exposure: comparability of effects in humans and animal models. Neurotoxicol Teratol 1990;12: 231–237.

    Google Scholar 

  51. Prager K, Malin H, Spiegler D, Van Natta P, Placek PJ. Smoking and drinking behavior before and during pregnancy of married mothers of liveborn infants and stillborn infants. Public Health Rep 1984;99: 117–127.

    Google Scholar 

  52. Brown RM, Fishman RHB. An overview and summary of the behavioral and neural consequences of perinatal exposure to psychotropic drugs. In Yanai J, ed. Neurobehavioral Teratology. New York: Elsevier, 1984: 23–24.

    Google Scholar 

  53. Naeye RL, Peers EC. Mental development of children whose mothers smoked during pregnancy. J Am Coll Obstet Gynecol 1984;64: 601–607.

    Google Scholar 

  54. Rantakallio P. A follow-up study to the age of 14 of children whose mothers smoked during pregnancy. Acta Paediatr Scand 1983;72: 747–753.

    Google Scholar 

  55. Werle MM, Pober BR, Holmes LB. Smoking and pregnancy. Teratology 1985;32: 473–481.

    Google Scholar 

  56. Roeleveld N, Vingerhoets E, Zielhuis GA, Gabreels F. Mental retardation associated with parental smoking and alcohol comsumption before, during, and after pregnancy. Prev Med 1992;21: 110–119.

    Google Scholar 

  57. Streissguth AP, Barr HM, Marthin DC, Herman CS. Effects of maternal alcohol, nicotine, and caffeine use during pregnancy on infant mental and motor development at eight months. Alcohol Clin Exp Res 1980;4 (2: 152–164.

    Google Scholar 

  58. Fried PA, Makin JE. Neonatal behavioural correlates of prenatal exposure to marihuana, cigarettes and alcohol in a low risk population. 1987;9: 1–7.

  59. Sonawane BR. Effect of prenatal nicotine exposure on reproductive function of rat offspring. Teratology 1982,25: 77A.

    Google Scholar 

  60. Britos SA, Orsingher OA. Prenatal nicotine exposure increased susceptibility to electroconvulsive shock (ECS) in adult rats. Neurotoxicol Teratol 1991;13: 271–273.

    Google Scholar 

  61. Joschko MA, Dreosti IE, Tulsi RS. The teratogenic effects of nicotine in vitro in rats: a light and electron microscope study. Neurotoxicol Teratol 1991;13: 307–316.

    Google Scholar 

  62. Tallman JF, Paul SM, Skolnick P, Gallager DW. Receptors for the age of anxiety: Pharmacology of the benzodiazepines. Science 1980;207: 274–281.

    Google Scholar 

  63. Gillberg C. Floppy infant syndrome and maternal diazepam. Lancet 1977;2: 244.

    Google Scholar 

  64. Laegreid L, Olegard R, Wahlström J, Conradi N. Abnormalities in children exposed to benzodiazepines in utero. Lancet 1987;1: 108–109.

    Google Scholar 

  65. Zielhuis GA, Pasker De Jong PCM, Eskes TKAB. Drug use during pregnancy and behaviour in the child. Teratology 1992;46: 32A-33A.

    Google Scholar 

  66. Pohorecky LA, Roberts P. Activity in a modified open-field apparatus: effect of diazepam and prenatal stress. Neurotoxicol Teratol 1991;13: 129–133.

    Google Scholar 

  67. Grimm VE. A review of diazepam and other benzodiazepines in pregnancy. In: Yanai J, ed. Neurobehavioral Teratology. New York: Elsevier, 1984: 153–160.

    Google Scholar 

  68. Schlumpf M, Ramseier H, Abriel H, Youmbi M, Baumann JB, Lichtensteiger W. Diazepam effects on the fetus. Neurotoxicology 1989;10: 501–516.

    Google Scholar 

  69. Laviola G, Chiarotti F, Alleva E. Development of GAPAergic modulation of mouse locomotor activity and pain sensitivity after prenatal benzodiazepine exposure. Neurotoxicol Teratol 1992;14: 1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on the MD dissertation “Multifactorial prospective epidemiological cohort study on effects due to prenatal exposure to metals, pollutants, and drugs on the behavioral development of Children” by Guizhen Liu under the guidance of Prof. F. Gutzwiller, Institute of Social and Preventive Medicine, University of Zurich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Elsner, J. Review of the multiple chemical exposure factors which may disturb human behavioral development. Soz Präventivmed 40, 209–217 (1995). https://doi.org/10.1007/BF01354475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01354475

Keywords

Navigation