Skip to main content
Log in

Cytochemical localization of phosphatase activity in vascular bundles and contiguous tissues of the leaf ofZea mays L.

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The cytochemical localization of phosphatase activity has been carried out on small and intermediate vascular bundles and contiguous tissues of the leaf ofZea mays L. Similar localization patterns were obtained with the nucleoside triphosphates ATP, CTP, GTP, ITP, and UTP, and with ADP and β-GP. Reaction product (lead deposits) was observed on the plasma membrane of all cell types. It was invariably heavier on the plasma membranes of the bundle-sheath cells, vascular-parenchyma cells, and the thin-walled sieve tubes and their associated companion cells than on those of the mesophyll cells. Within the bundles, the heaviest lead deposits frequently were found on the plasma membranes of the thin-walled sieve tubes and the least amount (often lacking) on those of the thick-walled sieve tubes. Formation of reaction product was suppressed by NaF, vanadate, and molybdate but not by PCMBS (p-chloromercuribenzene sulfonic acid). The results of the substrate-specificity and inhibitor-sensitivity studies indicate that a nonspecific acid phosphatase was probably responsible for the deposition of the reaction product and not the plasma membrane H+-ATPase. These results, in addition to an evaluation of the pertinent literature, lead us to conclude that H+-ATPase activity has yet to be demonstrated unequivocally in association with the plasma membrane of phloem cells with lead precipitation procedures. Nevertheless, the differences in amounts of reaction product generally associated with the plasma membranes of the thick- and thin-walled sieve tubes of the maize leaf indicate that the two types of sieve tube differ from one another physiologically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsanto JP (1986) Ca2+-binding sites and phosphatase activities in sieve element reticulum and P-protein of chick-pea phloem. A cytochemical and X-ray microanalysis survey. Protoplasma 132: 160–171

    Google Scholar 

  • Bil KYa, Belobrodskaya LK, Karpilov YuS (1976) Localization of ATPase in cellular structures of assimilating tissue in amaranth leaves. Dok Bot Sci 226: 16–19

    Google Scholar 

  • Bowman BJ, Mainzer SE, Allen KE, Slayman W (1978) Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases ofNeurospora crassa. Biochim Biophys Acta 512: 13–28

    Google Scholar 

  • Briskin DP, Leonard TT (1982) Partial characterization of a phosphorylated intermediate associated with the plasma membrane ATPase of corn roots. Proc Natl Acad Sci USA 79: 6922–6926

    Google Scholar 

  • Browning AJ, Hall JL, Baker DA (1980) Cytochemical localization of ATPase activity in phloem tissues ofRicinus communis. Protoplasma 104: 55–65

    Google Scholar 

  • Cantley LC Jr, Cantley LG, Josephson L (1978) A characterization of vanadate interactions with the (Na, K)-ATPase. Mechanistic and regulatory implications. J Biol Chem 253: 7361–7368

    Google Scholar 

  • Catesson A-M (1973) Observations cytochemiques sur le tubes criblés de quelques angiospermes. J Microsc (Paris) 16: 95–104

    Google Scholar 

  • Chaffey NJ, Harris N (1985) Localization of ATPase activity on the plasmalemma of scutellar epithelial cells of germinating barley (Hordeum vulgare L.). J Bot 36: 1612–1619

    Google Scholar 

  • Cocucci M, Ballarin-Denti A, Marrè MT (1980) Effects of orthovanadate on H+ secretion, K+ uptake, electrical potential difference, and membrane ATPase activities of higher plant tissues. Plant Sci Lett 17: 391–400

    Google Scholar 

  • Cronshaw J (1980) Histochemical localization of enzymes in the phloem. Ber Dtsch Bot Ges 93: 123–139

    Google Scholar 

  • — (1981) Phloem structure and function. Annu Rev Plant Physiol 32: 465–484

    Google Scholar 

  • DuPont FM, Burke LL, Spanswick RM (1981) Characterization of a partially purified adenosine triphosphatase from a corn root plasma membrane fraction. Plant Physiol 67: 59–63

    Google Scholar 

  • Esau K, Charvat ID (1975) An ultrastructural study of acid phosphatase localization in cells ofPhaseolus vulgaris phloem by the use of the azo dye method. Tissue Cell 7: 619–630

    Google Scholar 

  • Evert RF (1980) Vascular anatomy of angiospermous leaves, with special consideration of the maize leaf. Ber Dtsch Bot Ges 93: 43–55

    Google Scholar 

  • —,Botha CEJ, Mierzwa RJ (1985) Free-space marker studies on the leaf ofZea mays L. Protoplasma 126: 62–73

    Google Scholar 

  • —,Eschrich W, Heyser W (1977) Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells ofZea mays L. Planta 136: 77–89

    Google Scholar 

  • — — — (1978) Leaf structure in relation to solute transport and phloem loading inZea mays L. Planta 138: 279–294

    Google Scholar 

  • —,Mierzwa RJ (1986) Pathway(s) of assimilate movement from mesophyll cells to sieve tubes in theBeta vulgaris leaf. In:Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Alan R Liss, New York, pp 419–432

    Google Scholar 

  • Ezeala DO, Hart JW, Sabnis DD (1974) Fractionation of monovalent ion-stimulated nucleoside triphosphatase activity in extracts of petiolar tissue. J Bot 25: 1037–1044

    Google Scholar 

  • Firth JA (1980) Reliability and specificity of membrane adenosine triphosphatase localizations. J Histochem Cytochem 28: 69–71

    Google Scholar 

  • Fisher DG, Evert RF (1982 a) Studies on the leaf ofAmaranthus retroflexus (Amaranthaceae): morphology and anatomy. Am J Bot 69: 1133–1147

    Google Scholar 

  • — — (1982 b) Studies on the leaf ofAmaranthus retroflexus (Amaranthaceae): ultrastructure, plasmodesmatal frequency, and solute concentration in relation to phloem loading. Planta 155: 377–387

    Google Scholar 

  • Fritz E (1984) Versuche zum Einsatz der Röntgenmikroanalyse für den Ionennachweis in pflanzlichem Gewebe mit hoher Ortsauflösung. Ber Forsch Zentr Waldökosysteme/Waldsterben (Göttingen) 3: 55–67

    Google Scholar 

  • —,Evert RF, Heyser W (1983) Microautoradiographic studies of phloem loading and transport in the leaf ofZea mays L. Planta 159: 193–206

    Google Scholar 

  • Gallagher SR, Leonard RT (1982) Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities in corn roots. Plant Physiol 70: 1335–1340

    Google Scholar 

  • Giaquinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34: 347–387

    Google Scholar 

  • Gilder J, Cronshaw J (1973 a) The distribution of adenosine triphosphatase activity in differentiating and mature phloem cells ofNicotiana tabacum and its relationship to phloem transport. J Ultrastruct Res 44: 388–404

    Google Scholar 

  • — — (1973 b) Adenosine triphosphatase in the phloem ofCucurbita. Planta 110: 189–204

    Google Scholar 

  • — — (1974) A biochemical and cytochemical study of adenosine triphosphatase activity in the phloem ofNicotiana tabacum. J Cell Biol 60: 221–235

    Google Scholar 

  • Hager KM, Mandala SM, Davenport JW, Speicher DW, Benz EJ Jr.Slayman CW (1986) Amino acid sequence of the plasma membrane ATPase ofNeurospora crassa: deductions from genomic and cDNA sequences. Proc Natl Acad Sci USA 83: 7693–7697

    Google Scholar 

  • Hall JL (1969) Localization of cell surface triphosphatase activity in maize roots. Planta 85: 105–107

    Google Scholar 

  • — (1971) Cytochemical localization of ATPase activity in plant root cells. J Microsc 93: 219–225

    Google Scholar 

  • —,Kinney AJ, Dymott A, Thorpe JR, Brummell DA (1982) Localization and properties of ATPase activity in pea stems and wheat coleoptiles. Histochem J 14: 323–331

    Google Scholar 

  • Heyser W (1980) Phloem loading in the maize leaf. Ber Dtsch Bot Ges 93: 221–228

    Google Scholar 

  • —,Evert RF, Fritz E, Eschrich W (1978) Sucrose in the free space of translocating maize leaf bundles. Plant Physiol 62: 491–494

    Google Scholar 

  • Katz DB, Sussman MR, Mierzwa RJ, Evert RF (1988) Cytological localization of ATPase activity in oat roots localizes a plasma membrane-associated soluble phosphatase, not the proton pump. Plant Physiol 86: 841–847

    Google Scholar 

  • Komoszyński M, Maslowski P (1981) Purification and characterization of calcium ion activated ATPase from maize seedlings. Z Pflanzenphysiol 103: 53–64

    Google Scholar 

  • Leigh RA, Walker RR (1980) ATPase and acid phosphatase activities associated with vacuoles isolated from storage root of red beet (Beta vulgaris L.). Planta 150: 222–229

    Google Scholar 

  • Lundborg T, Widell S, Larsson C (1981) Distribution of ATPase in wheat root membranes separated by phase partition. Physiol Plant 52: 89–95

    Google Scholar 

  • Maynard JW, Lucas WJ (1982) Sucrose and glucose uptake intoBeta vulgaris leaf tissues. A case for general (apoplastic) retrieval systems. Plant Physiol 70: 1436–1443

    Google Scholar 

  • M'Batchi B, Delrot S (1984) Parachloromercuribenzenesulfonic acid. A potential tool for differential labeling of the sucrose transporter. Plant Physiol 75: 154–160

    Google Scholar 

  • Nagahashi G, Leonard RT, Thomson WW (1978) Purification of plasma membranes from roots of barley. Plant Physiol 61: 993–999

    Google Scholar 

  • NougarÈde A, Landré P, Rembur J (1983) Activités ATPasiques du noeud cotylédonaire et du bourgeon cotylédonaire du pois inhibé, réactivé ou soumis à la fusicoccine. Can J Bot 61: 119–134

    Google Scholar 

  • O'Neill SD, Spanswick RM (1984) Solubilization and reconstitution of a vanadate-sensitive H+-ATPase from the plasma membrane ofBeta vulgaris. J Membr Biol 79: 231–243

    Google Scholar 

  • Onofeghara FA, Koroma SA (1974) Histochemical localization of enzymes in the Cucurbitaceae. Acid phosphatase. Ann Bot 38: 477–483

    Google Scholar 

  • Oparka KJ, Johnson RPC, Bowen JD (1981) Sites of acid phosphatase in the differentiating root protophloem ofNymphoides peltata (S. G. Gmel.) O. Kuntze. Plant Cell Environ 4: 27–35

    Google Scholar 

  • Perlin DS, Spanswick RM (1980) Labeling and isolation of plasma membranes from corn leaf protoplasts. Plant Physiol 65: 1053–1057

    Google Scholar 

  • — — (1981) Characterization of ATPase activity associated with corn leaf plasma membranes. Plant Physiol 68: 521–526

    Google Scholar 

  • Pesacreta TC, Bennett AB, Lucas WJ (1986) Spectrophotometric and cytochemical analyses of phosphatase activity inBeta vulgaris L. J Histochem Cytochem 34: 327–338

    Google Scholar 

  • —,Lucas WJ (1986) Phosphatase activities inBeta vulgaris leaves. In:Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Alan R Liss, New York, pp 135–144

    Google Scholar 

  • Price GD, Whitecross MI (1983) Cytochemical localization of ATPase activity on the plasmalemma ofChara corallina. Protoplasma 116: 65–74

    Google Scholar 

  • Robards AW, Kidwai P (1969) Cytochemical localization of phosphatase in differentiating secondary vascular cells. Planta 87: 227–238

    Google Scholar 

  • Sabnis DD, Gordon M, Galston AW (1970) Localization of adenosine triphosphatase activity on the chloroplast envelope in tendrils ofPisum sativum. Plant Physiol 45: 25–32

    Google Scholar 

  • Sauter JJ (1977) Electron microscopical localization of adenosine triphosphatase and β-glycerophosphatase in sieve cells ofPinus nigra var.austriaca (Hoess) Badoux. Z Pflanzenphysiol 81: 438–458

    Google Scholar 

  • Scherer GFE (1984) Subcellular localization of H+-ATPase from pumpkin hypocotyls (Cucurbita maxima L.) by membrane fractionation. Planta 60: 348–356

    Google Scholar 

  • Sossountzov L, Habricot Y (1985) Ultracytochemical lcoalization and characterization of membrane-bound ATPases in lateral buds from wheat and decapitated plants of an aquatic fern,Marsilea drummondii A. Br. Protoplasma 127: 180–191

    Google Scholar 

  • Spencer-Phillips PTN, Gay JL (1981) Domains of ATPase in plasma membranes and transport through infected plant cells. New Phytol 89: 393–400

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Google Scholar 

  • Sze H (1984) H+-translocating ATPase of the plasma membrane and tonoplast of plant cells. Physiol Plant 61: 683–691

    Google Scholar 

  • Washitani I, Sato S (1976) On the reliability of the lead salt precipitation method of acid phosphatase localization in plant cells. Protoplasma 89: 157–170

    Google Scholar 

  • Wheeler H, Humphreys T (1979) Properties of a plasmalemma ATPase of the maize scutellum. Phytochemistry 18: 555–560

    Google Scholar 

  • — —,Aldrich H (1979) Localization of a phosphatase (ATPase) on the plasmalemma of the maize scutellum. Phytochemistry 18: 549–554

    Google Scholar 

  • Williams L, Nelson SJ, Hall JL (1986) Localization and properties of ATPase activity inRicinus cotyledons. In:Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Alan R Liss, New York, pp 145–155

    Google Scholar 

  • Winter-Sluiter E, Läuchli A, Krame D (1977) Cytochemical localization of K+-stimulated adenosine triphosphatase activity in xylem parenchyma cells of barley roots. Plant Physiol 60: 923–927

    Google Scholar 

  • Yapa PAJ, Spanner DC (1974) Localization of adenosine triphosphatase activity in mature sieve elements ofTetragonia. Planta 117: 321–328

    Google Scholar 

  • Zee SY (1969) The localization of acid phosphatase in the sieve element ofPisum. Aust J Biol Sci 22: 1051–1054

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evert, R.F., Mierzwa, R.J. & Eschrich, W. Cytochemical localization of phosphatase activity in vascular bundles and contiguous tissues of the leaf ofZea mays L.. Protoplasma 146, 41–51 (1988). https://doi.org/10.1007/BF01354294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01354294

Keywords

Navigation