Skip to main content
Log in

A cytokinin-sensitive mutant of the moss,Physcomitrella patens, defective in chloroplast division

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

An X-ray induced mutant (PC22) of the moss,Physcomitrella patens was analysed with respect to its morphology, physiology and suitability for microculture techniques. The mutant protonemata are defective in bud formation and in chloroplast division. As a consequence of the latter, giant chloroplasts are formed which disturb the development of the phragmoplast, the formation of regular cross walls, and cell division. Abnormal cross walls are rich in callose. The actin cytoskeleton was found to be less regularly developed in the mutant than in the wild type. Three-dimensional analysis of the microtubular arrangement with confocal laser scan microscopy demonstrates a close association between spindle- or phragmoplast- and “interphase”-microtubules. The deficiencies in chloroplast division and in bud formation can partly be compensated for by exogeneously applied cytokinin. The suitability of this particular developmental mutant for further studies was shown by regeneration of protoplasts in microculture and microinjection of the fluorochrome Lucifer yellow into the chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scan microscope

DAPI:

diamidinophenyl indole

DiOC:

3,3′-dihexyloxacarbocyanine iodide

EGTA:

ethylene glycol-bis-(β-amino-ethylether-N′,N′,N′,N′-tetraacetic acid

i6Ade:

N6-(2-isopentenyladenine)

PIPES:

piperazine-N, N′-bis-2-ethanesulfonic acid

ptDNA:

chloroplast DNA

References

  • Asahi Y, Toyama S (1982) Some factors affecting the chloroplast replication in the mossPlagiomnium trichomanes. Protoplasma 112: 9–16

    Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterization of auxotrophic and analogues resistant mutants of the moss,Physcomitrella patens. Mol Gen Genet 154: 87–95

    Google Scholar 

  • —, Grimsley NH, Cove DJ (1979) Analysis of gametophytic development in the moss,Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144: 427–435

    Google Scholar 

  • Batra A, Abel WO (1981) Development of moss plants from isolated and regenerated protoplasts. Plant Sci Lett 20: 183–189

    Google Scholar 

  • Bhatla SC, Bopp M (1985) The hormonal regulation of protonema development in mosses. III. Auxin-resistant mutants of the mossFunaria hygrometrica Hedw. J Plant Physiol 120: 233–243

    Google Scholar 

  • Bolik M, Spörlein B, Eigel L, Koop HU (1989) Manipulation and individual culture of selected single cells of higher plants: advances in individual culture, microinjection and microfusion. In: Jenkins DJ (ed) Proceedings, International Eucarpia Congress on Genetic Manipulation in Plant Breeding, Riso 1988. Plenum, New York, in press

    Google Scholar 

  • Bopp M, Jacob HJ (1986) Cytokinin effect on branching and bud formation inFunaria. Planta 169: 462–464

    Google Scholar 

  • Boyd PJ, Grimsley NH, Cove DJ (1988) Somatic mutagenesis of the moss,Physcomitrella patens. Mol Gen Genet 211: 545–546

    Google Scholar 

  • Brown RC, Lemmon BE (1988) Preprophasic microtubule systems and development of the mitotic spindle in hornworts (Bryophyta). Protoplasma 143: 11–21

    Google Scholar 

  • Butterfaß T (1979) Patterns of chloroplast reproduction. A developmental approach to protoplasmic plant anatomy. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 6]

    Google Scholar 

  • Currier HB, Strugger S (1956) Aniline blue and fluorescence microscopy of callose in bulb scales ofAllium cepa L. Protoplasma 45: 552–559

    Google Scholar 

  • Doonan JH, Cove DJ, Corke FMK, Lloyd CW (1987) Pre-prophase band of microtubules, absent from tip-growing moss filaments, arises in leafy shoots during transition to intercalary growth. Cell Motil Cytoskel 7: 138–153

    Google Scholar 

  • —, Lloyd CW (1985) Immunofluorescence microscopy of microtubules in intact cell lineages of the moss,Physcomitrella patens. J Cell Sci 75: 131–147

    Google Scholar 

  • Ellis JR, Leech RM (1985) Cell size and chloroplast size in relation to chloroplast replication in light-grown wheat leaves. Planta 165: 120–125

    Google Scholar 

  • Engel PP (1968) The induction of biochemical and morphological mutants in the mossPhyscomitrella patens. Am J Bot 55: 438–446

    Google Scholar 

  • Fiedrich MA (1980) Versuche zur Mutationsauslösung durch synergistische Wirkung von Röntgenstrahlen und Schwermetallen beiPhyscomitrella patens. Thesis, University of Hamburg, Hamburg

    Google Scholar 

  • Großkopf DG, Kroiher M (1988) Gradients in plastid and mitochondrial DNA synthesis inFunaria protonemata: visualization by bromodeoxyuridine immunohistochemistry. Protoplasma 147: 1–4

    Google Scholar 

  • Hansen S, Koop H-U, Abel WO (1988) Electrofusion of two selected single moss protoplasts. Mitt Inst Allg Bot Hamburg 22: 29–34

    Google Scholar 

  • Hennis AS, Birky Jr CW (1984) Stochastic partitioning of chloroplasts at cell division in the algaOlisthodiscus and compensating control of chloroplast replication. J Cell Sci 70: 1–15

    Google Scholar 

  • Kiermayer O (1981) Cytoplasmic basis of morphogenesis inMicrasterias. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 147–189 [Alfert M et al (eds) Cell biology monographs, vol 8]

    Google Scholar 

  • Koop H-U, Schweiger H-G (1985) Regenerating of plants from individually cultivated protoplasts using an improved microculture system. J Plant Physiol 121: 245–257

    Google Scholar 

  • - Bolik M, Eigel L, Spörlein B (1989) Microtechniques for transfer of genes or genomes in higher plants: manipulation of defined single cells. In: Galling G (ed) Proceedings of the Symposium on Applied Plant Molecular Biology, Braunschweig 1988, pp. 279–286

  • Krupp JM, Lang NJ (1985) Cell division and filamentous formation in the desmidBambusina brebissonii (Chlorophyta). J Phycol 21: 16–25

    Google Scholar 

  • Mita T, Kuroiwa T (1988) Division of plastids by a plastid-dividing ring inCyanidium caldarium. Protoplasma [Suppl 1]: 133–152

    Google Scholar 

  • Quader H, Schnepf E (1986) Endoplasmic reticulum and cytoplasmic streaming: fluorescence microscopical observations in adaxial epidermis cells of onion bulb scales. Protoplasma 131: 250–252

    Google Scholar 

  • Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss,Physcomitrella patens, using isopentenyladenine. Planta 165: 345–358

    Google Scholar 

  • Saunders MJ (1986) Correlation of electrical current influx with nuclear position and division inFunaria caulonema tip cells. Protoplasma 132: 32–37

    Google Scholar 

  • Schimper AF (1883) Über die Entwicklung der Chlorophyllkörner und Farbkörper. Bot Ztg 41: 105–112, 121–131, 137–146, 153–162, Erwiderung: 803–817

    Google Scholar 

  • Schmiedel G, Schnepf E (1979) Side branch formation and orientation in the caulonema of the moss,Funaria hygrometrica: experiments with inhibitors and with centrifugation. Protoplasma 101: 47–59

    Google Scholar 

  • — — (1980) Polarity and growth of caulonema tip cells of the mossFunaria hygrometrica. Protoplasma 101: 47–59

    Google Scholar 

  • —, Reiss H-D, Schnepf E (1981) Associations between membrane and microtubules in caulonema tip cells of the mossFunaria hygrometrica. Protoplasma 108: 173–190

    Google Scholar 

  • Schnepf E (1973) Mikrotubulus-Anordnung und -Umordnung, Wandbildung und Zellmorphogenese in jungenSphagnum-Blättchen. Protoplasma 78: 145–173

    Google Scholar 

  • — (1986) Cellular polarity. Ann Rev Plant Physiol 37: 23–47

    Google Scholar 

  • Steinbiss HH, Stabel P (1983) Protoplast derived tobacco cells can survive capillary microinjection of the fluorescent dye Lucifer yellow. Protoplasma 116: 223–227

    Google Scholar 

  • Tewinkel M, Volkmann D (1987) Observations on dividing plastids in the protonema of the mossFunaria hygrometrica Sibth. Arrangement of microtubules and filaments. Planta 172: 309–320

    Google Scholar 

  • —, Kruse S, Quader H, Volkmann D, Sievers A (1989) Visualization of actin filament pattern in plant cells without pre-fixation: a comparison of differently modified phallotoxins. Protoplasma 149: 178–181

    Google Scholar 

  • Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol 105: 387–395

    Google Scholar 

  • Wacker I, Quader H, Schnepf E (1988) Influence of the herbicide oryzalin on cytoskeleton and growth ofFuncaria hygrometrica protonemata. Protoplasma 142: 55–67

    Google Scholar 

  • Ye F, Gierlich J, Reski R, Marienfeld JR, Abel WO (1989) Isoenzyme analysis of cytokinin-sensitive mutants of the moss,Physcomitrella patens. Plant Sci 64, in press

Download references

Author information

Authors and Affiliations

Authors

Additional information

Devoted to the memory of Prof. Dr. O. Kiermayer, our colleague and friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, W.O., Knebel, W., Koop, H.U. et al. A cytokinin-sensitive mutant of the moss,Physcomitrella patens, defective in chloroplast division. Protoplasma 152, 1–13 (1989). https://doi.org/10.1007/BF01354234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01354234

Keywords

Navigation