Amino Acids

, Volume 15, Issue 1–2, pp 43–52 | Cite as

Activation of adenosine A2 receptors enhances high K+-evoked taurine release from rat hippocampus: A microdialysis study

  • Junichi Hada
  • T. Kaku
  • K. Morimoto
  • Y. Hayashi
  • K. Nagai
Full Papers


The present study was designed to examine which type of adenosine receptors was involved in enhancement of high K+-evoked taurine release fromin vivo rat hippocampus using microdialysis. Perfusion with 0.5 or 5.0 mM adenosine enhanced high K+-evoked taurine release. Perfusion with 2μM R(−)-N6-2-phenylisopropyladenosine (PIA), a selective adenosine A1 receptor agonist, did not modulate taurine release. Perfusion with 1μM 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, increased taurine release. On the other hand, perfusion with 20μM 2-[4-(2-carboxyethyl)phenethylamino]-5′-N-ethyl-carboxamideadenosine (CGS21680), a selective adenosine A2A receptor agonist, enhanced taurine release, while perfusion with 1 mM 3,7-dimethyl-propagylxanthine (DMPX), an adenosine A2 receptor antagonist, did not affect taurine release. These results demonstrate that adenosine enhances high K+-evoked taurine release via activation of adenosine A2A receptors from both neurons and glial cells ofin vivo rat hippocampus.


Amino acids Adenosine Taurine Hippocampus Microdialysis Spreading depression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bourke RS, Kimelberg HK, Daza MA (1978) Effects of inhibitors and adenosine on (HCO3 /CO2)-stimulated swelling and Cl uptake in brain slices and cultured astrocytes. Brain Res 154: 196–202Google Scholar
  2. Bourke RS, Waldman JB, Kimelberg HK, Barron KD, uSan Filippo BD, Popp AJ, Nelson LR (1981) Adenosine-stimulated astroglial swelling in cat cerebral cortexin vivo with total inhibition by a non-diuretic acylaryloxyacid derivative. J Neurosurg 55: 364–370Google Scholar
  3. Brundege JM, Dunwiddie TV (1997) Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol 39: 353–391Google Scholar
  4. Cunha RA, Johansson B, Constantino MD, Sebastiao AM, Fredholm BB (1996) Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H]CGS21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn-Schmiedeberg's Arch Pharmacol 353: 261–271Google Scholar
  5. Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46: 143–156Google Scholar
  6. Hada J, Kaku T, Morimoto K, Hayashi Y, Nagai K (1995) Effects of L-PIA, an adenosine A1 receptor agonist, on high K+-evoked amino acid release and spreading depression. 4th IBRO World Congress of Neuroscience [Abstract]: 193Google Scholar
  7. Hada J, Kaku T, Morimoto K, Hayashi Y, Nagai K (1996) Adenosine transport inhibitors enhance high K+-evoked taurine release from rat hippocampus. Eur J Pharmacol 305: 101–107Google Scholar
  8. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72: 101–163Google Scholar
  9. Kaku T, Hada J, Hayashi Y (1994) Endogenous adenosine exerts inhibitory effects upon the development of spreading depression and glutamate release by microdialysis with K+ in rat hippocampus. Brain Res 658: 39–48Google Scholar
  10. Kaku T, Hada J, Morimoto K, Hayashi Y (1997) Role of adenosine upon high K+-evoked spreading depression and glutamate release fromin vivo rat hippocampus. In: Okada Y(ed) The role of adenosine in the nervous system. Elsevier, Amsterdam, pp 157–164Google Scholar
  11. Kamisaki Y, Maeda K, Ishimura M, Omura H, Itoh T (1993) Effects of taurine on depolarization-evoked release of amino acids from rat cortical synaptosomes. Brain Res 627: 181–185Google Scholar
  12. Koyama Y, Ishibashi T, Tanaka K, Baba A (1994) L-Glutamate-stimulated taurine release from rat cerebral cultured astrocytes. J Neurosci Res 38: 75–80Google Scholar
  13. Madelian V, Silliman S, Shain W (1988) Adenosine stimulates cAMP-mediated taurine release from LRM55 glial cells. J Neurosci Res 20: 176–181Google Scholar
  14. Menendez N, Solis JM, Herreras O, Herranz AS, Martin del Rio R (1990) Role of endogenous taurine on the glutamate analogue-induced neurotoxicity in the rat hippocampus in vivo. J Neurochem 55: 714–717Google Scholar
  15. Miyamoto AT, Miyamoto JK (1996) Effects of adenosine on taurine release in the central nervous system. Jpn J Physiol 46 [Suppl]: S179Google Scholar
  16. Saransaari P, Oja SS (1992) Release of GABA and taurine from brain slices. Prog Neurobiol 38: 455–482Google Scholar
  17. Schousboe A, Pasantes-Morales H (1989) Potassium-stimulated release of [3H]taurine from cultured GABAergic and glutamatergic neurons. J Neurochem 53: 1309–1315Google Scholar
  18. Somjen GG, Aitken PG, Czeh GL, Herreras O, Jing J, Young JN (1992) Mechanisms of spreading depression: a review of recent findings and a hypothesis. Can J Physiol Pharamacol 70: S248-S254Google Scholar
  19. Taber KH, Lin C-T, Liu J-W, Thalmann RH, Wu J-Y (1986) Taurine in hippocampus: localization and postsynaptic action. Brain Res 386: 113–121Google Scholar
  20. uVon Lubitz DKJE, Carter M, Beenhakker M, Lin RC-S, Jacobson KA (1995) Adenosine: a prototherapeutic concept in neurodegeneration. Ann NY Acad Sci 765: 163–178Google Scholar
  21. Zeise M (1985) Taurine on hippocampal slices: comparison to GABA and glycine, and antagonism by 4-aminopyridine. In: Oja SS, Ahtee L, Kontro P, Paasonen MK (eds) Taurine: biological actions and clinical perspectives. Alan R. Liss, New York, pp 281–287Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Junichi Hada
    • 1
  • T. Kaku
    • 1
  • K. Morimoto
    • 3
  • Y. Hayashi
    • 1
  • K. Nagai
    • 2
  1. 1.Department of PhysiologyHyogo College of MedicineHyogoNishinomiyaJapan
  2. 2.Department of PharmacologyHyogo College of MedicineHyogoJapan
  3. 3.Department of NeurosurgeryOsaka Medical Center and Research Institute for Maternal and Child HealthOsakaJapan

Personalised recommendations