Amino Acids

, Volume 15, Issue 1–2, pp 27–42 | Cite as

Precursors of taurine in female genital tract: Effects on developmental capacity of bovine embryo producedin vitro

  • Catherine Guyader-Joly
  • P. Guérin
  • J. P. Renard
  • J. Guillaud
  • S. Ponchon
  • Y. Ménézo
Full Papers


Two precursors of taurine have been studied: cysteamine and hypotaurine. Cysteamine has been quantified in genital secretions and found in follicular fluids of all species tested. On the contrary cysteamine was not detected (or traces) in tubal fluids of the same species. Addition of 50, 100 or 250μM of cysteamine to the maturation medium used in the culturing of bovine oocytes did not improve the cleavage rate nor the embryo's developmental potentialin vitro. Furthermore, at 250μM, cysteamine seems to be toxic to the embryo. Addition of 0.5–1 mM hypotaurine to the bovine embryo culture medium improved significantly blastocyst production and quality. The respective roles of these 2 taurine precursors on maturation and embryo development are discussed.


Amino acids Cysteamine Cystamine Hypotaurine Taurine Bovinein vitro embryo production Follicular fluid Oviduct fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aruoma OI, Halliwell B, Hoey M, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256: 251–255Google Scholar
  2. Barnett DK, Bavister BD (1992) Hypotaurine requirement for in vitro development of golden hamster one-cell embryos into morulae and blastocysts, and production of term offspring from in vitro-fertilized ova. Biol Reprod 47: 297–304Google Scholar
  3. Bird RP (1980) Cysteamine as a protective agent with high-LET radiations. Radiat Res 82: 290Google Scholar
  4. Boatman DE (1997) Responses of gametes to the ovidiuctal environment. Hum Reprod 12 Nat [Suppl] JBF 2: 133–149Google Scholar
  5. Cavallini D, De Marco D, Scandurra M, Dupré S, Graziani T (1966) The enzymatic oxidation of cysteamine to hypotaurine. J Biol Chem 241: 3189–3196Google Scholar
  6. Clewe TH, Mastroianni L Jr (1960) A method for continuous volumetric collection of oviduct secretion J Reprod Fertil 1: 146–150Google Scholar
  7. David A, Brackett BG, Garcia CR, Mastroianni L (1969) Composition of rabbit oviduct fluid in ligated segments of the fallopian tube. J Reprod Fertil 19: 285–289Google Scholar
  8. De Matos DG, Furnus CC, Moses DF, Baldassarre H (1995) Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol Reprod Dev 42: 432–436Google Scholar
  9. Dumoulin JCM, Evers JLH, Bras M, Pieters MHEC, Geraedts JPM (1992) Positive effect of taurine on preimplantation development of mouse embryos in vitro. J Reprod Fertil 94: 373–380Google Scholar
  10. Eyestone WH, First NL (1989) Co-culture of early cattle embryos to the blastocyst stage with oviductal tissue or in conditioned medium. J Reprod Fertil 85: 715–720Google Scholar
  11. Fellman JH, Roth ES (1985) The biological oxidation of hypotaurine to taurine: hypotaurine as an antioxidant. Prog Clin Biol Res 179: 71–82Google Scholar
  12. Fellman JH, Green TR, Eicher AL (1987) The oxidation of hypotaurine to taurine: Bis-aminoethyl-α-disulfone, a metabolic intermediate in mammalian tissue. Adv Exp Med Biol 217: 39–48Google Scholar
  13. Funahashi H, Cantley TC, Stumpf TT, Terlouw SL, Day BN (1994) Use of low-salt culture medium for in vitro maturation of porcine oocytes is associated with elevated oocyte glutathione levels and enhanced male pronuclear formation after in vitro fertilization. Biol Reprod 51: 633–639Google Scholar
  14. Goto K, Kajihara Y, Kosada S, Koba M, Nakanishi Y, Ogawa K (1988) Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes. J Reprod Fertil 83: 753–758Google Scholar
  15. Goto Y, Noda Y, Mori T, Nakano M (1993) Increased generation of reactive oxygen species in embryos cultured in vitro. Free Rad Biol Med 15: 69–75Google Scholar
  16. Grupen CG, Nagashima H, Nottle MB (1995) Cysteamine enhances in vitro development of porcine oocytes matured and fertilized in vitro. Biol Reprod 53: 173–178Google Scholar
  17. Guérin P, Guillaud J, Ménézo Y (1995a) Hypotaurine in spermatozoa and genital secretions and its production by oviduct epithelial cells in vitro. Hum Reprod 10: 866–872Google Scholar
  18. Guérin P, Tappaz M, Guillaud J, Ménézo Y (1995b) Mise en évidence de la cystéine sulfinate décarboxylase (EC dans les cellules épithéliales tubaires de vache et de chèvre. CR Acad Sci SerIII 318: 523–528Google Scholar
  19. Guérin P, Gallois E, Croteau S, Revol N, Maurin F, Menezo Y (1995c) Les techniques de récolte du liquide tubaire et du liquide folliculaire chez les animaux domestiques. Rev Med Vet 146: 805–814Google Scholar
  20. Guyader-Jolt' C, Ponchon S, Durand M, Menck C, Heyman Y (1996) Quality assessment of bovine IVF embryos cultured on Vero cells. In proceedings of the 12th Embryo Transfer European Association meeting. Lyon, France, September 13–14, 1996Google Scholar
  21. Harvey MB, Arcellana-Panlilio MY, Zhang X, Schultz GA, Watson AJ (1995) Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo coculture. Biol Reprod 53: 532–540Google Scholar
  22. Heyman Y, Ménézo Y, Chesne P, Camus S, Garnier V (1987) In vitro cleavage of bovine and ovine early embryos; improved development using co-culture with trophoblastic vesicles. Theriogenol 27: 59–68Google Scholar
  23. Huxtable RJ (1992) The physiological actions of taurine. Physiol Rev 72: 101–163Google Scholar
  24. Ishii T, Hishimura I, Bannai S, Sugita Y (1981) Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol. J Cell Physiol 107:283–293Google Scholar
  25. Issel RD, Nagele A, Ecker KG, Wilmanns W (1988) Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and N-acetylcysteme. Biochem Pharmacol 37: 881–888Google Scholar
  26. Johnson MH, Nasr-Esfahani MH (1994) Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantational mammalian embryos in vitro. BioEssays 16: 31–38Google Scholar
  27. Kito S, Bavister BD (1997) Male pronuclear formation and early embryonic development of hamster oocytes matured in vitro with gonadotrophins, amino acids and cysteamine. J Reprod Fertil 110: 35–46Google Scholar
  28. Luvoni GC, Keskintepe L, Brackett BG (1996) Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol Reprod Dev 43: 437–443Google Scholar
  29. Meister A (1983) Selective modification of glutathione metabolism. Science 220: 472–477Google Scholar
  30. Ménézo Y (1976) Milieu synthétique pour la survie et la maturation des gamètes et pour la culture de l'œuf fécondé. CR Acad Sci, Paris, Ser D 282: 1967–1970Google Scholar
  31. Ménézo Y, Guérin JF, Czyba JC (1990) Improvement of human early embryo development in vitro by coculture on monolayers of Vero cells. Biol Reprod 42: 301–306Google Scholar
  32. Mohindru A, Fisher JM, Rabinovitz M (1985) Endogenous copper is cytotoxic to a lymphoma in primary culture which requires thiols for growth. Experientia 41: 1064–1066Google Scholar
  33. Nakayama T, Noda Y, Goto Y, Mori T (1994) Effects of visible light and others environmental factors on the production of oxygen radicals by hamster embryos. Theriogenol 41: 499–510Google Scholar
  34. Nasr-Esfahani MH, Aitken RJ, Johnson MH (1990) Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109: 501–507Google Scholar
  35. Noda Y, Matsumoto H, Umaoka Y, Tatsumi K, Kishi J, Mori T (1991) Involvement of superoxide radicals in the mouse 2-cell block. Mol Reprod Dev 28: 356–360Google Scholar
  36. Petters RM, Reed ML (1991) Addition of taurine or hypotaurine to culture medium improves development of early one-cell hamster embryos to the morula/blastocyst stage. Theriogenol 35: 253 (abstr)Google Scholar
  37. Reed ML, Illera MJ, Petters RM (1992) In vitro culture of pig embryos. Theriogenol 37: 95–109Google Scholar
  38. Rao DV, Narra VR, Howell RW, Sastry KSR (1990) Biological consequences of nuclear versus cytoplasmic decays of 1-125: cysteamine as a radioprotector against Auger cascades in vivo. Radiat Res 124: 188Google Scholar
  39. Ricci G, Dupré S, Federici G, Spoto G, Matarese RM, Cavallini D (1978) Oxidation of hypotaurine to taurine by ultraviolet irradiation. Physiol Chem Phys 10: 435–441Google Scholar
  40. Sawai K, Funahashi H, Niwa K (1997) Stage-specific requirement of cysteine during in vitro maturation of porcine oocytes for glutathione synthesis associated with male pronuclear formation. Biol Reprod 57: 1–6Google Scholar
  41. Smoluk GD, Fahey RC, Ward JF (1988) Interaction of glutathione and other low molecular weight thiols with DNA: evidence for counterion condensation and coion depletion near DNA. Radiat Res 114: 3Google Scholar
  42. Stanke DF, de Young DW, Sikes JD, Mather EC (1973) Collection of bovine oviduct secretion. J Reprod Fertil 32: 535–537Google Scholar
  43. Susko-Parrish JL, Wheeler MB, Ax RL, First NL, Parrish JJ (1990) The effect of penicillamine, hypotaurine, epinephrine and sodium metabisulfite, on bovine in vitro fertilization. Theriogenol 33: 333 (abstr.)Google Scholar
  44. Takahashi M, Nagai T, Hamano S, Kuwayama M., Okamura N, Okano A (1993) Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol Reprod 49: 228–232Google Scholar
  45. Thibault CG (1973) Final stages of mammalian oocyte maturation. In: Biggers JD, Schuetz AW (eds) Oogenesis, Univ Park PressBaltimore, p 397Google Scholar
  46. Van Winkle LJ, Patel M, Wasserlauf HG, Dickinson HR, Campione AL (1994) Osmotic regulation of taurine transport via systemβ and novel processes in mouse preimplantation conceptuses. Biochim Biophys Acta 1191: 244–255Google Scholar
  47. Vermeiden JPW, Bast A (1995) Antioxidants in IVF culture media. Hum Reprod 11: 696–698Google Scholar
  48. Yoshida M, Ishigaki K, Nagai T, Chikyu M, Pursel VG (1993) Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleas. Biol Reprod 49: 89–94Google Scholar
  49. Zheng S, Newton GL, Gonick G, Fahey RC, Ward JF (1988) Radioprotection of DNA by thiols: relationship between the net charge on a thiol and its ability to protect DNA. Radiat Res 114: 11Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Catherine Guyader-Joly
    • 1
  • P. Guérin
    • 2
    • 3
  • J. P. Renard
    • 4
  • J. Guillaud
    • 3
  • S. Ponchon
    • 1
  • Y. Ménézo
    • 3
    • 5
  1. 1.UNCEIA Centre de fécondation in vitroChateauvillainFrance
  2. 2.Ecole Vétérinaire, CERREC BP 83Marcy létoile
  3. 3.INSAVilleurbanne
  4. 4.INRA Unité de Biologie du développementJouy-en-Josas
  5. 5.Laboratoire Marcel MérieuxBronFrance

Personalised recommendations