Skip to main content
Log in

Automatic potentiometric determination of dissolved oxygen

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Commercially available automatic titration systems were tested in 1988 for potentiometric titration of liberated iodine by the Winkler method of oxygen determination. The potentiometric equivalence point was also compared to the manual starch end point. Finally the automatic method was used in order to estimate belowhalocline respiration in the Kattegat, Sweden. Standard deviations of 0.007 ml O2 l−1 or 0.1 to 0.3% coefficients of variation (% standard deviation of the mean) were achieved when titrating 25 ml from replicate 60-ml oxygen bottles using the automatic method, or 50 ml manually. The precision for replicate titrations of 50-ml aliquots of 0.001N KIO3 was <0.05% (0.002 ml 0.01N Na2S2O3) for the automatic method. Titration time for 25-ml aliquots was 2 to 4 min, somewhat longer than for manual titrations (1 to 1.5 min). However, during titration the operator is free to perform other tasks. It is not possible to use automatic sample changers, due to rapid iodine volatilization. The equipment can be handled by relatively unskilled analysts and is suitable for use on board research vessels or in field stations [weight for a MettlerTM titrator (Mettler Instrumente AG, Greifensee, Switzerland) <10 kg, volume <0.1 m3]. Below-halocline oxygen consumption in the SE Kattegat ranged from 0 to 6 ml O2 m−3 h−1 (mean values for September and October 1988=1.69 and 0.66 ml O2 m−3 h−1, respectively, with 95% confidence limits of ca. ±0.6 ml O2 m−3 h−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aminot, A. (1988). Precision and accuracy of dissolved oxygen measurements. A comment on the paper by Oudot et al. 1988: precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system. Limnol. Oceanogr. 33: 1646–1648

    Google Scholar 

  • Anonymous (1987). Determination of dissolved oxygen content in water — titrimetric method. Swedish Standard SS 02 81 14 (2). SIS — Swedish Bureau of Standards, Stockholm (in Swedish)

  • Atkinson, M. J. (1988). Fast-response oxygen sensor for free-fall CTD. Limnol. Oceanogr. 33: 141–145

    Google Scholar 

  • Atwood, D. K., Kinard, W. K., Barcelona, M. J., Johnson, E. C. (1977). Comparison of polarographic electrode and Winkler titration determinations of dissolved oxygen in oceanographic samples. Deep-Sea Res. 24: 311–313

    Google Scholar 

  • Bender, M., and co-authors (1987). A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32: 1085–1098

    Google Scholar 

  • Bryan, J. R., Riley, J. P., Williams, P. J. LeB. (1976). A Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. exp. mar. Biol. Ecol. 21: 191–197

    Google Scholar 

  • Carpenter, J. H. (1965a). The accuracy of the Winkler method for dissolved oxygen analysis. Limnol. Oceanogr. 10: 135–140

    Google Scholar 

  • Carpenter, J. H. (1965b). The Chesapeake Bay institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10: 141–143

    Google Scholar 

  • Christensen, J. P., Packard, T. T. (1979). Respiratory electron transport activities in phytoplankton and bacteria: comparison of methods. Limnol. Oceanogr. 24: 576–583

    Google Scholar 

  • Cornett, R. J., Rigler, F. H. (1986). Simple method of measuring seston respiration in oligotrophic lakes. Can. J. Fish. aquat. Sciences 43: 1660–1663

    Google Scholar 

  • Culberson, C. H., Huang, S. (1987). Automated amperometric oxygen titration. Deep-Sea Res. 34: 875–880

    Google Scholar 

  • Golterman, H. L., Clymo, R. S., Ohnstad, M. A. M. (1978). IBP Handbook No. 8: Methods for physical and chemical analysis of fresh waters, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Griffith, P. C. (1988). A high-precision respirometer for measuring small rates of change in the oxygen concentration of natural waters. Limnol. Oceanogr. 33: 632–638

    Google Scholar 

  • Hartwig, E. O., Michael, J. A. (1978). A sensitive photoelectric Winkler titrator for respiration measurements. Envir. Sci. Technol 12: 712–715

    Google Scholar 

  • Johnson, K. M., King, A. E., Sieburth, J. McN. (1985). Coulometric TCO2 analyses for marine studies; an introduction. Mar. Chem. 16: 61–82

    Google Scholar 

  • Laevastu, T., Zeitlin, H., Song, M. K. (1965). Notes on oxygen consumption in seawater. Limnol. Oceanogr. 10: 144–146

    Google Scholar 

  • Langdon, C. (1984). Dissolved oxygen monitoring system using a pulsed electrode: design, performance, and evaluation. Deep-Sea Res. 31: 1357–1367

    Google Scholar 

  • Oudot, C. (1989). Precision and accuracy of dissolved oxygen measurements. A reply to the comment of Aminot (1988). Limnol. Oceanogr. 34: 965–966

    Google Scholar 

  • Oudot, C., Gerard, R., Morin, P., Gningue, I. (1988). Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system. Limnol. Oceanogr. 33: 146–150

    Google Scholar 

  • Packard, T. T., Denis, M., Rodier, M., Garfield, P. (1988). Deepocean metabolic CO2 production: calculations from ETS activity. Deep-Sea Res. 35: 371–382

    Google Scholar 

  • Revsbech, N. P. (1983). In situ measurements of oxygen profiles of sediments by use of oxygen microelectrodes. In: Gneiger, E., Förstner, H. (eds.) Polarographic oxygen sensors: aquatic and physiological applications. Springer-Verlag, Berlin, p. 265–273

    Google Scholar 

  • Revsbech, N. P., Ward, D. M. (1983). Oxygen microelectrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated byCyanidium caldarium. Appl. envirl Microbiol. 45: 755–759

    Google Scholar 

  • Schwaerter, S., Søndergaard, M., Riemann, B., Møller Jensen, L. (1988). Respiration in eutrophic lakes: the contribution of bacterioplankton and bacterial growth yield. J Plankton Res. 10: 515–531

    Google Scholar 

  • Tschumi, P. A., Zbären, D., Zbären, J. (1977). An improved oxygen method for measuring primary production in lakes. Schweiz. Z. Hydrol. 39: 306–313

    Google Scholar 

  • Tijssen, S. B. (1979). Diurnal oxygen rhythm and primary production in the mixed layer of the Atlantic Ocean at 20°N. Neth. J. Sea Res. 13: 79–84

    Google Scholar 

  • Tijssen, S. B., Eijgenraam, A. (1982). Primary and community production in the southern bight of the North Sea deduced from oxygen concentration variations in the spring of 1980. Neth. J. Sea Res. 16: 247–259

    Google Scholar 

  • Wetzel, R. G., Likens, G. E. (1979). Limnological analyses. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Willard, H. H., Merritt, L. L. Jr., Dean, J. A. (1965). Instrumental methods of analysis. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Williams, P. J. LeB. (1984). A review of measurements of respiration rates of marine plankton populations. In: Hobbie, J. E., Williams, P. J. LeB. (eds.) Heterotrophic activity in the sea. Plenum Press, New York, p. 357–391

    Google Scholar 

  • Williams, P. J. LeB., Jenkinson, N. W. (1982). A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use. Limnol. Oceanogr. 27: 576–584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granéli, W., Granéli, E. Automatic potentiometric determination of dissolved oxygen. Mar. Biol. 108, 341–348 (1991). https://doi.org/10.1007/BF01344349

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344349

Keywords

Navigation