Skip to main content
Log in

Microbial populations in surface films and subsurface waters: Amino acid metabolism and growth

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sea surface microlayer (film) and subsurface microbial populations (biomass and activities) were studied in the Damariscotta (Maine) estuary in May and September, 1987. Dissolved free and combined amino acids (DFAA, DCAA), bacterial numbers, microbial ATP, bacterial and microbial DNA synthesis (via3H-thymidine and3H-adenine), and amino acid (3H-glutamic acid) metabolism were measured. DFAA and DCAA were typically enriched in the surface microlayers relative to surface waters, although utilization of glutamic acid was usually more rapid in subsurface waters, as was incorporation of thymidine. Bacteria represented 12 to 40% of the microbial biomass as determined by ATP, except during microalgal blooms in the microlayer. Bacteria were generally not enriched in the surface films, although ATP usually was enriched. Rain input appeared to deplete population densities but stimulated population activities. Two stations which contained similar microbial populations (as estimated by bacterial counts, chlorophylla and ATP) showed very different microbial activities, apparently due to the effects of a substantial rainstorm on one of the stations. The bacterially-dominated processes utilizing thymidine and glutamic acid were enhanced approx five-fold after the rain. Autotrophic carbon production increased approx two-fold, while total microbal community DNA synthesis (as estimated by adenine incorporation into DNA) increased nearly tenfold. The observations of this study indicate that surface microlayers in the temperate waters off the coast of Maine contain highly active heterotrophic and autotrophic populations. The microbial community responds rapidly to changes in nutrient and dissolved organic matter concentrations resulting from both seasonal and temporal effects, including rain and runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bell, R. T. (1986). Further verification of the isotope dilution approach for estimating the degree of participation of [3H]thymidine in DNA synthesis in studies of aquatic bacterial production. Appl. envirl Microbiol 52: 1212–1214

    Google Scholar 

  • Bell, R. T., Riemann, B. (1989). Adenine incorporation into DNA as a measure of microbial production in freshwaters. Limnol. Oceanogr. 34: 435–444

    Google Scholar 

  • Benner, R., Lay, J., K'nees, E., Hodson, R. E. (1988). Carbon conversion efficiency for bacterial growth on lignocellulose: implications for detritus-based food webs. Limnol. Oceanogr. 33: 1514–1526

    Google Scholar 

  • Bratbak, G. (1985). Bacterial biovolume and biomass estimations. Appl. envirl Microbiol. 49: 1488–1493

    Google Scholar 

  • Brittain, A. M., Karl, D. M. (1990). Catabolism of tritiated thymidine by aquatic microbial communities and incorporation of tritium into RNA and protein. Appl. envirl Microbiol. 56: 1245–1254

    Google Scholar 

  • Carlson, D. J. (1982). Surface microlayer phenolic enrichments indicate sea surface slicks. Nature, Lond. 296: 426–429

    Google Scholar 

  • Carlson, D. J., Cantey, J. L. Cullen, J. J. (1988). Description of and results from a new surface microlayer sampling device. Deep-Sea Res. 35: 1205–1213

    Google Scholar 

  • Carlson, D. J., Mayer, L. M. (1980). Enrichment of dissolved phenolic material in the surface microlayer of coastal waters. Nature, Lond. 286: 482–483

    Google Scholar 

  • Carlucci, A. F., Craven, D. B., Henrichs, S. M. (1985). Surface-film microheterotrophs: amino acid metabolism and solar radiation effects on their activities. Mar. Biol. 85: 13–22

    Google Scholar 

  • Carlucci, A. F., Craven, D. B., Robertson, K. J., Williams, P. M. (1986). Surface-film microbial populations: diel amino acid metabolism, carbon utilization, and growth rates. Mar. Biol. 92: 289–297

    Google Scholar 

  • Carman, K. R., Dobbs, F. C., Guckert, J. B. (1988). Consequences of thymidine catabolism for estimates of bacterial production: an example for a coastal marine sediment. Limnol. Oceanogr. 33: 1595–1606

    Google Scholar 

  • Chin-Leo, G., Kirchman, D. L. (1988). Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl. envirl Microbiol. 54: 1934–1939

    Google Scholar 

  • Chin-Leo, G., Kirchman, D. L. (1990). Unbalanced growth in natural assemblages of marine bacterioplankton. Mar. Ecol. Prog. Ser. 63: 1–8

    Google Scholar 

  • Coffin, R. B. (1989). Bacterial uptake of dissolved free and combined amino acids. Limnol. Oceanogr. 34: 531–542

    Google Scholar 

  • Coveney, M. F., Wetzel, R. G. (1988). Experimental evaluation of conversion factors for the [3H]thymidine incorporation assay of bacterial secondary productivity. Appl. envirl Microbiol. 54: 2018–2026

    Google Scholar 

  • Cuhel, R. L., Jannasch, H. W., Taylor, C. D., Lean, D. R. S. (1983). Microbial growth and macromolecular synthesis in the northwestern Atlantic Ocean. Limnol. Oceanogr. 28: 1–18

    Google Scholar 

  • Cullen, J. J., MacIntyre, H. L., Carlson, D. J. (1989). Distributions and photosynthesis of phototrophs in sea-surface films. Mar. Ecol. Prog. Ser. 55: 271–278

    Google Scholar 

  • Davis, C. L. (1989). Uptake and incorporation of thymidine by bacterial isolates from an upwelling environment. Appl. envirl Microbiol. 55: 1267–1272

    Google Scholar 

  • De la Giraudiere, I., Laborde, P., Romano, J.-C. (1989). HPLC determination of chlorophylls and breakdown products in surface microlayers. Mar. Chem. 26: 189–204

    Google Scholar 

  • Fuhrman, J. A., Ducklow, H. W., Kirchman, D. L., Hudak, J., McManus, G. B., Kramer, J. (1986a). Does adenine incorporation into nucleic acids measure total microbial production? Limnol. Oceanogr. 31: 627–636

    Google Scholar 

  • Fuhrman, J. A., Ducklow, H. G., Kirchman, D. L. McManus, G. B. (1986b). Adenine and total microbial production: a reply. Limnol. Oceanogr. 31: 1395–1400

    Google Scholar 

  • Hardy, J. T. (1982). The sea surface microlayer: biology, chemistry and anthropogenic enrichment. Prog. Oceanogr. 11: 307–328

    Google Scholar 

  • Hardy, J. T., Apts, C. W. (1989). Photosynthetic carbon reduction: high rates in the sea-surface microlayer. Mar. Biol. 101: 411–417

    Google Scholar 

  • Henrichs, S. M., Williams, P. M. (1985). Dissolved and particulate amino acids and carbohydrates in the sea surface microlayer. Mar. Chem. 17: 141–163

    Google Scholar 

  • Hermansson, M., Jones, G. W., Kjelleberg, S. (1987). Frequency of antibiotic and heavy metal resistance, pigmentation, and plasmids in bacteria of the marine air—water interface. Appl. envirl Microbiol. 53: 2338–2342

    Google Scholar 

  • Hollibaugh, J. T. (1988). Limitations of the [3H]thymidine method for estimating bacterial productivity due to thymidine metabolism. Mar. Ecol. Prog. Ser. 43: 19–30

    Google Scholar 

  • Jeffrey, W. H., Paul, J. H. (1986a). Activity of an attached and free-livingVibrio sp. as measured by thymidine incorporation,p-iodonitratetrazolium reduction, and ATP/DNA ratios. Appl. envirl Microbiol. 51: 150–156

    Google Scholar 

  • Jeffrey, W. H., Paul, J. H. (1986b). Activity measurements of planktonic microbial and microfouling communities in a eutrophic estuary. Appl. envirl Microbiol. 51: 157–162

    Google Scholar 

  • Jeffrey, W. H., Paul, J. H. (1988). Underestimation of DNA synthesis by [3H]thymidine incorporation in marine bacteria. Appl. envirl Microbiol. 54: 3165–3268

    Google Scholar 

  • Karl, D. M. (1981). Simultaneous rates of ribonucleic acid and deoxyribonucleic acid synthesis for estimating growth and cell division of aquatic microbial communities. Appl. envirl Microbiol. 42: 802–810

    Google Scholar 

  • Karl, D. M. (1986). Determination ofin situ microbial biomass, viability, metabolism and growth. In: Poindexter, J. S., Leadbetter, E. R. (eds.) Bacteria in nature. Vol. 2. Plenum Press, New York, p. 85–176

    Google Scholar 

  • Karl, D. M., Winn, C. D. (1984). Adenine metabolism and nucleic acid synthesis: applications to microbiological oceanography. In: Hobbie, J. E., Williams, P. J. (eds.) Heterotrophic activity in the sea. Plenum Press, New York, p. 197–215

    Google Scholar 

  • Karl, D. M., Winn, C. D. (1986). Does adenine incorporation into nucleic acids measure total microbial production? A response to comments by Fuhrmanet al. Limnol. Oceanogr. 31: 1384–1294

    Google Scholar 

  • Kattner, G., Nagel, K., Eberlein, K., Hammer, K.-D. (1985). Components of natural surface microlayers and subsurface water. Oceanol. Acta 8: 175–183

    Google Scholar 

  • Lee, S., Fuhrman, J. A. (1987). Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. envirl Microbiol. 53: 1298–1303

    Google Scholar 

  • Lehninger, A. L. (1975). Biochemistry, 2nd ed. Worth Publishers, Inc., New York

    Google Scholar 

  • Macko, S. A., Green, E. J. (1982). An investigation of the dissolved free amino acids and their relation to phytoplankton cell density in the Damariscotta River estuary, Maine. Estuaries 5: 68–73

    Google Scholar 

  • McAlice, B. J. (1977). A preliminary oceanographic survey of the Damariscotta River estuary, Lincoln County, Maine. Sea Grant tech. Rep. Univ. Maine, Orono 13: 1–27

    Google Scholar 

  • McAlice, B. J. (1979). Hydrographic and nutrient data: Damariscotta River estuary, Lincoln County, Maine 1967–1977. Sea Grant tech. Rep. Univ. Maine, Orono 43: 1–95

    Google Scholar 

  • Mopper, K., Zika, R. G. (1987). Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling. Nature, Lond. 325: 246–249

    Google Scholar 

  • Nagata, T., Watanabe, Y. (1990). Carbon- and nitrogen-to-volume ratios of bacterioplankton grown under different nutritional conditions. Appl. envirl Microbiol. 56: 1303–1309

    Google Scholar 

  • Odham, G., Noren, B., Norkrans, B., Sodergren, A., Lofgren, H. (1978). Biological and chemical aspects of the aquatic lipid surface microlayer. Prog. Chem. Fats 16: 31–44

    Google Scholar 

  • Orrett, K., Karl, D. M. (1987). Dissolved organic phosphorus production in surface seawaters. Limnol. Oceanogr. 32: 383–395

    Google Scholar 

  • Revelante, N., Gilmartin, M. (1987). Seasonal cycle of the ciliated protozoan and micrometazoan biomass in a Gulf of Maine estuary. Estuar., cstl Shelf Sci. 25: 581–598

    Google Scholar 

  • Riemann, B., Bjornsen, P. K., Newell, S., Fallon, R. (1987). Calculation of cell production of coastal marine bacteria based on incorporation of [3H]thymidine. Limnol. Oceanogr. 32: 471–476

    Google Scholar 

  • Rivkin, R. B. (1986). Incorporation of tritiated thymidine by eucaryotic microalgae. J. Phycol. 22: 193–198

    Google Scholar 

  • Robertson, K. J., Williams, P. M., Bada J. L. (1987). Acid hydrolysis of dissolved combined amino acids in seawater: a precautionary note. Limnol. Oceanogr. 32: 996–997

    Google Scholar 

  • Rosso, A. L., Azam, F. (1987). Proteolytic activity in coastal oceanic waters: depth distribution and relationship to bacterial populations. Mar. Ecol. Prog. Ser. 41: 231–240

    Google Scholar 

  • Sanders, R. W. (1987). Tintinnids and other microzooplankton — seasonal distributions and relationships to resources and hydrography in a Maine estuary. J. Plankton Res. 9: 65–77

    Google Scholar 

  • Scavia, D., Laird, G. A., Fahnenstiel, G. L. (1986). Production of plankton bacteria in Lake Michigan. Limnol. Oceanogr. 31: 612–626

    Google Scholar 

  • Taylor, G. T., Karl, D. M., Pace, M. L. (1986). Impact of bacteria and zooflagellates on the composition of sinking particles. Mar. Ecol. Prog. Ser. 29: 141–155

    Google Scholar 

  • Williams, P. M., Carlucci, A. F., Henrichs, S. M., Van Vleet, E. S., Horrigan, S. G., Reid, F. M. H., Robertson, K. J. (1986). Chemical and microbiological studies of sea-surface film in the southern Gulf of California and off the west coast of Baja California. Mar. Chem. 19: 17–98

    Google Scholar 

  • Winn, C. D., Karl, D. M. (1984). Laboratory calibrations of the [3H]adenine technique for measuring rates of RNA and DNA synthesis in marine microorganisms. Appl. envirl Microbiol. 47: 835–842

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlucci, A.F., Craven, D.B. & Wolgast, D.M. Microbial populations in surface films and subsurface waters: Amino acid metabolism and growth. Mar. Biol. 108, 329–339 (1991). https://doi.org/10.1007/BF01344348

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344348

Keywords

Navigation