Abstract
Several lines of evidence in the literature indicate that environmental stress such as starvation may initiate reallocation of sea urchin endoskeletal tissue. For example, Aristotle's lantern enlarges under conditions of starvation, and sea urchins tagged with tetracycline and then fed develop a distinct growth line, while starved individuals develop a diffuse pattern. We designed anin vivo system to examine stress-related changes in calcification in the purple sea urchinStrongylocentrotus purpuratus. SmallS. purpuratus (ca. 2 cm test diam) were collected from the Mission Bay jetty or Imperial Beach (San Diego, California, USA) in 1987.45Ca was incorporated from seawater into all body fractions including the organic tissue/coelomic fluid. In an initial experiment, sea urchins were fed or starved for 4 wk and then post-incubated in isotope. Overall, starved individuals deposited new calcite more slowly than did fed individuals; however, allocation was very different and calcification of teeth of starved sea urchins was nearly as great as in fed individuals. In a second experiment,S. purpuratus were first pre-labeled with isotope and then treated by feeding or starving. More of the labeled calcium was mobilized from the soft tissues and coelomic fluid into calcite in fed than in starved individuals. Growth of the teeth in starved sea urchins was significantly greater than in those fed. We conclude that starvation changes the metabolism of calcium in order to preferentially build teeth. However, we also found no evidence that calcium was resorbed from “old” skeletal calcite in order to build “new” skeleton.
Similar content being viewed by others
Literature cited
Black, R., Codd, C., Hebbert, D., Vink, S., Burt, J. (1984). The functional significance of the relative size of Aristotle's lantern in the sea urchinEchinometra mathaei (de Blainville). J. exp. mar. Biol. Ecol. 77: 81–97
Black, R., Johnson, M. S., Trendall, J. T. (1982). Relative size of Aristotle's lantern inEchinometra mathaei occurring at different densities. Mar. Biol. 71: 101–106
Böhm, L. (1978). Application of the45Ca tracer method for determination of calcification rates in calcareous algae: effect of calcium exchange and differential saturation of algal calcium pools. Mar. Biol. 47: 9–14
Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155
Cocanour, B. A. (1969). Growth and reproduction of the sand dollar,Echinarachnius parma (Echinodermata: Echinoidea). PhD. dissertation, University of Maine, Orono
Dafni, J., Erez, J. (1987). Skeletal calcification patterns in the sea urchinTripneustes gratilla elatensis. (Echinoidea: Regularia). I. Basic patterns. Mar. Biol. 95: 275–287
Dawson, K. B. (1955). Calcium exchange in bone. J. Biochem. 60: 389–391
Donachy, J. E., Watabe, N. (1986). Effects of salinity and calcium concentration on arm regeneration byOphiothrix angulata (Echinodermata: Ophiuroidea). Mar. Biol. 91: 253–257
Dix, T. G. (1972). Biology ofEvechinus chloroticus (Echinoidea: Echinometridae) from different localities. 4. Age, growth and size. N. Z. Jl mar. Freshwat. Res. 6: 48–68
Ebert, T. A. (1967). Negative growth and longevity in the purple sea urchinStrongylocentrotus purpuratus (Stimpson). Science, N.Y. 157: 557–558
Ebert, T. A. (1968). Growth rates of the sea urchinStrongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49: 1075–1091
Ebert, T. A. (1980). Relative growth of sea urchin jaws: an example of plastic resource allocation. Bull. mar. Sci. 30: 467–474
Edwards, P. (1986). The effect of spine damage and food shortages upon the allocation of resources in the purple sea urchin,Strongylocentrotus purpuratus. MS. thesis. San Diego State University, California
Fansler, S. C. (1983). Phenotypic plasticity of skeletal elements in the purple sea urchin,Strongylocentrotus purpuratus. MS. thesis. San Diego State University, California
Goreau, T. F., Goreau, N. J. (1960). The physiology of skeleton formation in corals. IV. On isotopic equilibrium exchanges of calcium between corallum and environment in living and dead rebuilding corals. Biol. Bull. mar. biol. Lab., Woods Hole 119: 416–427
Heaney, R. P. (1963). Evaluation and interpretation of calciumkinetic data in man. Clin. Orthop. 31: 153–183
Heatfield, B. M. (1970). Calcification in echinoderms: effects of temperature and diamox on incorporation of calcium-45in vitro by regenerating spines ofStrongylocentrotus purpuratus. Biol. Bull. mar. biol. Lab., Woods Hole 139: 151–163
Heatfield, B. M. (1972). Origin of calcified tissue in regenerating spines of the sea urchin,Strongylocentrotus purpuratus (Stimpson): a quantitative radiographic study with tritiated thymidine. J. exp. Zool. 178: 233–246
Holland, N. D. (1965). An autoradiographic investigation of tooth renewal in the purple sea urchinStrongylocentrotus purpuratus. J. exp. Zool. 158: 275–282
Hyman, L. H. (1955). The invertebrates. Vol. IV. Echinodermata. McGraw-Hill Book Co., New York
Kaneko, I., Ikeda, Y., Ozaki, H. (1981a). Absorption of calcium through digestive tract in sea urchin. Bull. Jap. Soc. scient. Fish. 47: 1421–1424
Kaneko, I., Ikeda, Y., Ozaki, H. (1981b). Absorption of calcium from seawater and its excretion in sea urchin. Bull. Jap. Soc. scient. Fish. 47: 1425–1430
Kaneko, I., Yayoi, I., Ozaki, H. (1982). Calcium level of each part in sea urchin. Bull. Jap. Soc. scient. Fish. 48: 11–13
Kingsley, R. J., Watabe, N. (1984). Calcium uptake in the gorgonianLeptogorgia virgulata. The effects of ATPase inhibitors. Comp Biochem. Physiol. 79A: 487–491
Kingsley, R. J., Watabe, N. (1985). An autoradiographic study of calcium transport in spicule formation in the gorgonianLeptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). Cell Tissue Res. 239: 305–310
Lawrence, J. M., Lane, J. M. (1982). The utilization of nutrients by post-metamorphic echinoderms. In: Jangoux, M., Lawrence J. M. (eds.) Echinoderm nutrition. A. A. Balkema, Rotterdam, p. 331–371
Leighton, D. L. (1966). Studies of food preference in algivorous invertebrates of Southern California kelp beds. Pacif. Sci. 20: 104–113
Levitan, D. R. (1988). Density-dependent size regulation and negative growth in the sea urchinDiadema antillarum Philippi. Oecologia 76: 627–629
Märkel, K., Röser, U. (1983). Calcite-resorption in the spine of the echinoidEucidaris tribuloides. Zoomorphology 103: 43–58
Märkel, K., Röser, U., Mackenstedt, U., Klostermann, M. (1986). Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoidea). Zoomorphology 106: 232–243
Moss, J. E., Lawrence, J. M. (1972). Changes in carbohydrate, lipid, and protein levels with age and season in the sand dollarMellita quinquiesperforata. J. exp. mar. Biol. Ecol. 8: 225–239
Nauen, C. E., Böhm, L. (1979). Skeletal growth in the echinodermAsterias rubens L. (Asteroidea, Echinodermata) estimated by45Ca-labeling. J. exp. mar. Biol. Ecol. 38: 261–269
Pearse, J. S., Pearse, V. B. (1975). Growth zones in echinoid skeleton. Am. Zool. 15: 731–753
Régis, M.-B. (1979). Croissance négative de l'oursinParacentrotus lividus (Lamarck) (Echinoidea: Echinidae). C. r. hebd. Séanc. Acad. Sci., Paris 288D: 355–358 (1979)
Shimizu, M., Yamada, J. (1980). Sclerocytes and crystal growth in the regeneration of sea urchins test and spines. In: Omori, M., Watabe, N. (eds.) The mechanisms of biomineralization in animals and plants. Tokai University Press, Tokyo, p. 169–178
Smith-Gill, S. J. (1983). Developmental plasticity: developmental conversionversus phenotypic modulation. Am. Zool. 23: 47–55
Velimirov, B., King, J. (1979). Calcium uptake and net calcification rates in the octocoralEunicella papillosa. Mar. Biol. 50: 349–358
Author information
Authors and Affiliations
Additional information
Communicated by M. G. Hadfield, Honolulu
Rights and permissions
About this article
Cite this article
Lewis, C.A., Ebert, T.A. & Boren, M.E. Allocation of45calcium to body components of starved and fed purple sea urchins (Strongylocentrotus purpuratus). Mar. Biol. 105, 213–222 (1990). https://doi.org/10.1007/BF01344289
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01344289