Skip to main content
Log in

Allocation of45calcium to body components of starved and fed purple sea urchins (Strongylocentrotus purpuratus)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Several lines of evidence in the literature indicate that environmental stress such as starvation may initiate reallocation of sea urchin endoskeletal tissue. For example, Aristotle's lantern enlarges under conditions of starvation, and sea urchins tagged with tetracycline and then fed develop a distinct growth line, while starved individuals develop a diffuse pattern. We designed anin vivo system to examine stress-related changes in calcification in the purple sea urchinStrongylocentrotus purpuratus. SmallS. purpuratus (ca. 2 cm test diam) were collected from the Mission Bay jetty or Imperial Beach (San Diego, California, USA) in 1987.45Ca was incorporated from seawater into all body fractions including the organic tissue/coelomic fluid. In an initial experiment, sea urchins were fed or starved for 4 wk and then post-incubated in isotope. Overall, starved individuals deposited new calcite more slowly than did fed individuals; however, allocation was very different and calcification of teeth of starved sea urchins was nearly as great as in fed individuals. In a second experiment,S. purpuratus were first pre-labeled with isotope and then treated by feeding or starving. More of the labeled calcium was mobilized from the soft tissues and coelomic fluid into calcite in fed than in starved individuals. Growth of the teeth in starved sea urchins was significantly greater than in those fed. We conclude that starvation changes the metabolism of calcium in order to preferentially build teeth. However, we also found no evidence that calcium was resorbed from “old” skeletal calcite in order to build “new” skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Black, R., Codd, C., Hebbert, D., Vink, S., Burt, J. (1984). The functional significance of the relative size of Aristotle's lantern in the sea urchinEchinometra mathaei (de Blainville). J. exp. mar. Biol. Ecol. 77: 81–97

    Google Scholar 

  • Black, R., Johnson, M. S., Trendall, J. T. (1982). Relative size of Aristotle's lantern inEchinometra mathaei occurring at different densities. Mar. Biol. 71: 101–106

    Google Scholar 

  • Böhm, L. (1978). Application of the45Ca tracer method for determination of calcification rates in calcareous algae: effect of calcium exchange and differential saturation of algal calcium pools. Mar. Biol. 47: 9–14

    Google Scholar 

  • Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155

    Google Scholar 

  • Cocanour, B. A. (1969). Growth and reproduction of the sand dollar,Echinarachnius parma (Echinodermata: Echinoidea). PhD. dissertation, University of Maine, Orono

    Google Scholar 

  • Dafni, J., Erez, J. (1987). Skeletal calcification patterns in the sea urchinTripneustes gratilla elatensis. (Echinoidea: Regularia). I. Basic patterns. Mar. Biol. 95: 275–287

    Google Scholar 

  • Dawson, K. B. (1955). Calcium exchange in bone. J. Biochem. 60: 389–391

    Google Scholar 

  • Donachy, J. E., Watabe, N. (1986). Effects of salinity and calcium concentration on arm regeneration byOphiothrix angulata (Echinodermata: Ophiuroidea). Mar. Biol. 91: 253–257

    Google Scholar 

  • Dix, T. G. (1972). Biology ofEvechinus chloroticus (Echinoidea: Echinometridae) from different localities. 4. Age, growth and size. N. Z. Jl mar. Freshwat. Res. 6: 48–68

    Google Scholar 

  • Ebert, T. A. (1967). Negative growth and longevity in the purple sea urchinStrongylocentrotus purpuratus (Stimpson). Science, N.Y. 157: 557–558

    Google Scholar 

  • Ebert, T. A. (1968). Growth rates of the sea urchinStrongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49: 1075–1091

    Google Scholar 

  • Ebert, T. A. (1980). Relative growth of sea urchin jaws: an example of plastic resource allocation. Bull. mar. Sci. 30: 467–474

    Google Scholar 

  • Edwards, P. (1986). The effect of spine damage and food shortages upon the allocation of resources in the purple sea urchin,Strongylocentrotus purpuratus. MS. thesis. San Diego State University, California

    Google Scholar 

  • Fansler, S. C. (1983). Phenotypic plasticity of skeletal elements in the purple sea urchin,Strongylocentrotus purpuratus. MS. thesis. San Diego State University, California

    Google Scholar 

  • Goreau, T. F., Goreau, N. J. (1960). The physiology of skeleton formation in corals. IV. On isotopic equilibrium exchanges of calcium between corallum and environment in living and dead rebuilding corals. Biol. Bull. mar. biol. Lab., Woods Hole 119: 416–427

    Google Scholar 

  • Heaney, R. P. (1963). Evaluation and interpretation of calciumkinetic data in man. Clin. Orthop. 31: 153–183

    Google Scholar 

  • Heatfield, B. M. (1970). Calcification in echinoderms: effects of temperature and diamox on incorporation of calcium-45in vitro by regenerating spines ofStrongylocentrotus purpuratus. Biol. Bull. mar. biol. Lab., Woods Hole 139: 151–163

    Google Scholar 

  • Heatfield, B. M. (1972). Origin of calcified tissue in regenerating spines of the sea urchin,Strongylocentrotus purpuratus (Stimpson): a quantitative radiographic study with tritiated thymidine. J. exp. Zool. 178: 233–246

    Google Scholar 

  • Holland, N. D. (1965). An autoradiographic investigation of tooth renewal in the purple sea urchinStrongylocentrotus purpuratus. J. exp. Zool. 158: 275–282

    Google Scholar 

  • Hyman, L. H. (1955). The invertebrates. Vol. IV. Echinodermata. McGraw-Hill Book Co., New York

    Google Scholar 

  • Kaneko, I., Ikeda, Y., Ozaki, H. (1981a). Absorption of calcium through digestive tract in sea urchin. Bull. Jap. Soc. scient. Fish. 47: 1421–1424

    Google Scholar 

  • Kaneko, I., Ikeda, Y., Ozaki, H. (1981b). Absorption of calcium from seawater and its excretion in sea urchin. Bull. Jap. Soc. scient. Fish. 47: 1425–1430

    Google Scholar 

  • Kaneko, I., Yayoi, I., Ozaki, H. (1982). Calcium level of each part in sea urchin. Bull. Jap. Soc. scient. Fish. 48: 11–13

    Google Scholar 

  • Kingsley, R. J., Watabe, N. (1984). Calcium uptake in the gorgonianLeptogorgia virgulata. The effects of ATPase inhibitors. Comp Biochem. Physiol. 79A: 487–491

    Google Scholar 

  • Kingsley, R. J., Watabe, N. (1985). An autoradiographic study of calcium transport in spicule formation in the gorgonianLeptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). Cell Tissue Res. 239: 305–310

    Google Scholar 

  • Lawrence, J. M., Lane, J. M. (1982). The utilization of nutrients by post-metamorphic echinoderms. In: Jangoux, M., Lawrence J. M. (eds.) Echinoderm nutrition. A. A. Balkema, Rotterdam, p. 331–371

    Google Scholar 

  • Leighton, D. L. (1966). Studies of food preference in algivorous invertebrates of Southern California kelp beds. Pacif. Sci. 20: 104–113

    Google Scholar 

  • Levitan, D. R. (1988). Density-dependent size regulation and negative growth in the sea urchinDiadema antillarum Philippi. Oecologia 76: 627–629

    Google Scholar 

  • Märkel, K., Röser, U. (1983). Calcite-resorption in the spine of the echinoidEucidaris tribuloides. Zoomorphology 103: 43–58

    Google Scholar 

  • Märkel, K., Röser, U., Mackenstedt, U., Klostermann, M. (1986). Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoidea). Zoomorphology 106: 232–243

    Google Scholar 

  • Moss, J. E., Lawrence, J. M. (1972). Changes in carbohydrate, lipid, and protein levels with age and season in the sand dollarMellita quinquiesperforata. J. exp. mar. Biol. Ecol. 8: 225–239

    Google Scholar 

  • Nauen, C. E., Böhm, L. (1979). Skeletal growth in the echinodermAsterias rubens L. (Asteroidea, Echinodermata) estimated by45Ca-labeling. J. exp. mar. Biol. Ecol. 38: 261–269

    Google Scholar 

  • Pearse, J. S., Pearse, V. B. (1975). Growth zones in echinoid skeleton. Am. Zool. 15: 731–753

    Google Scholar 

  • Régis, M.-B. (1979). Croissance négative de l'oursinParacentrotus lividus (Lamarck) (Echinoidea: Echinidae). C. r. hebd. Séanc. Acad. Sci., Paris 288D: 355–358 (1979)

    Google Scholar 

  • Shimizu, M., Yamada, J. (1980). Sclerocytes and crystal growth in the regeneration of sea urchins test and spines. In: Omori, M., Watabe, N. (eds.) The mechanisms of biomineralization in animals and plants. Tokai University Press, Tokyo, p. 169–178

    Google Scholar 

  • Smith-Gill, S. J. (1983). Developmental plasticity: developmental conversionversus phenotypic modulation. Am. Zool. 23: 47–55

    Google Scholar 

  • Velimirov, B., King, J. (1979). Calcium uptake and net calcification rates in the octocoralEunicella papillosa. Mar. Biol. 50: 349–358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, C.A., Ebert, T.A. & Boren, M.E. Allocation of45calcium to body components of starved and fed purple sea urchins (Strongylocentrotus purpuratus). Mar. Biol. 105, 213–222 (1990). https://doi.org/10.1007/BF01344289

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344289

Keywords

Navigation