Marine Biology

, Volume 105, Issue 2, pp 213–222 | Cite as

Allocation of45calcium to body components of starved and fed purple sea urchins (Strongylocentrotus purpuratus)

  • C. A. Lewis
  • T. A. Ebert
  • M. E. Boren
Article

Abstract

Several lines of evidence in the literature indicate that environmental stress such as starvation may initiate reallocation of sea urchin endoskeletal tissue. For example, Aristotle's lantern enlarges under conditions of starvation, and sea urchins tagged with tetracycline and then fed develop a distinct growth line, while starved individuals develop a diffuse pattern. We designed anin vivo system to examine stress-related changes in calcification in the purple sea urchinStrongylocentrotus purpuratus. SmallS. purpuratus (ca. 2 cm test diam) were collected from the Mission Bay jetty or Imperial Beach (San Diego, California, USA) in 1987.45Ca was incorporated from seawater into all body fractions including the organic tissue/coelomic fluid. In an initial experiment, sea urchins were fed or starved for 4 wk and then post-incubated in isotope. Overall, starved individuals deposited new calcite more slowly than did fed individuals; however, allocation was very different and calcification of teeth of starved sea urchins was nearly as great as in fed individuals. In a second experiment,S. purpuratus were first pre-labeled with isotope and then treated by feeding or starving. More of the labeled calcium was mobilized from the soft tissues and coelomic fluid into calcite in fed than in starved individuals. Growth of the teeth in starved sea urchins was significantly greater than in those fed. We conclude that starvation changes the metabolism of calcium in order to preferentially build teeth. However, we also found no evidence that calcium was resorbed from “old” skeletal calcite in order to build “new” skeleton.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Black, R., Codd, C., Hebbert, D., Vink, S., Burt, J. (1984). The functional significance of the relative size of Aristotle's lantern in the sea urchinEchinometra mathaei (de Blainville). J. exp. mar. Biol. Ecol. 77: 81–97Google Scholar
  2. Black, R., Johnson, M. S., Trendall, J. T. (1982). Relative size of Aristotle's lantern inEchinometra mathaei occurring at different densities. Mar. Biol. 71: 101–106Google Scholar
  3. Böhm, L. (1978). Application of the45Ca tracer method for determination of calcification rates in calcareous algae: effect of calcium exchange and differential saturation of algal calcium pools. Mar. Biol. 47: 9–14Google Scholar
  4. Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155Google Scholar
  5. Cocanour, B. A. (1969). Growth and reproduction of the sand dollar,Echinarachnius parma (Echinodermata: Echinoidea). PhD. dissertation, University of Maine, OronoGoogle Scholar
  6. Dafni, J., Erez, J. (1987). Skeletal calcification patterns in the sea urchinTripneustes gratilla elatensis. (Echinoidea: Regularia). I. Basic patterns. Mar. Biol. 95: 275–287Google Scholar
  7. Dawson, K. B. (1955). Calcium exchange in bone. J. Biochem. 60: 389–391Google Scholar
  8. Donachy, J. E., Watabe, N. (1986). Effects of salinity and calcium concentration on arm regeneration byOphiothrix angulata (Echinodermata: Ophiuroidea). Mar. Biol. 91: 253–257Google Scholar
  9. Dix, T. G. (1972). Biology ofEvechinus chloroticus (Echinoidea: Echinometridae) from different localities. 4. Age, growth and size. N. Z. Jl mar. Freshwat. Res. 6: 48–68Google Scholar
  10. Ebert, T. A. (1967). Negative growth and longevity in the purple sea urchinStrongylocentrotus purpuratus (Stimpson). Science, N.Y. 157: 557–558Google Scholar
  11. Ebert, T. A. (1968). Growth rates of the sea urchinStrongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49: 1075–1091Google Scholar
  12. Ebert, T. A. (1980). Relative growth of sea urchin jaws: an example of plastic resource allocation. Bull. mar. Sci. 30: 467–474Google Scholar
  13. Edwards, P. (1986). The effect of spine damage and food shortages upon the allocation of resources in the purple sea urchin,Strongylocentrotus purpuratus. MS. thesis. San Diego State University, CaliforniaGoogle Scholar
  14. Fansler, S. C. (1983). Phenotypic plasticity of skeletal elements in the purple sea urchin,Strongylocentrotus purpuratus. MS. thesis. San Diego State University, CaliforniaGoogle Scholar
  15. Goreau, T. F., Goreau, N. J. (1960). The physiology of skeleton formation in corals. IV. On isotopic equilibrium exchanges of calcium between corallum and environment in living and dead rebuilding corals. Biol. Bull. mar. biol. Lab., Woods Hole 119: 416–427Google Scholar
  16. Heaney, R. P. (1963). Evaluation and interpretation of calciumkinetic data in man. Clin. Orthop. 31: 153–183Google Scholar
  17. Heatfield, B. M. (1970). Calcification in echinoderms: effects of temperature and diamox on incorporation of calcium-45in vitro by regenerating spines ofStrongylocentrotus purpuratus. Biol. Bull. mar. biol. Lab., Woods Hole 139: 151–163Google Scholar
  18. Heatfield, B. M. (1972). Origin of calcified tissue in regenerating spines of the sea urchin,Strongylocentrotus purpuratus (Stimpson): a quantitative radiographic study with tritiated thymidine. J. exp. Zool. 178: 233–246Google Scholar
  19. Holland, N. D. (1965). An autoradiographic investigation of tooth renewal in the purple sea urchinStrongylocentrotus purpuratus. J. exp. Zool. 158: 275–282Google Scholar
  20. Hyman, L. H. (1955). The invertebrates. Vol. IV. Echinodermata. McGraw-Hill Book Co., New YorkGoogle Scholar
  21. Kaneko, I., Ikeda, Y., Ozaki, H. (1981a). Absorption of calcium through digestive tract in sea urchin. Bull. Jap. Soc. scient. Fish. 47: 1421–1424Google Scholar
  22. Kaneko, I., Ikeda, Y., Ozaki, H. (1981b). Absorption of calcium from seawater and its excretion in sea urchin. Bull. Jap. Soc. scient. Fish. 47: 1425–1430Google Scholar
  23. Kaneko, I., Yayoi, I., Ozaki, H. (1982). Calcium level of each part in sea urchin. Bull. Jap. Soc. scient. Fish. 48: 11–13Google Scholar
  24. Kingsley, R. J., Watabe, N. (1984). Calcium uptake in the gorgonianLeptogorgia virgulata. The effects of ATPase inhibitors. Comp Biochem. Physiol. 79A: 487–491Google Scholar
  25. Kingsley, R. J., Watabe, N. (1985). An autoradiographic study of calcium transport in spicule formation in the gorgonianLeptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). Cell Tissue Res. 239: 305–310Google Scholar
  26. Lawrence, J. M., Lane, J. M. (1982). The utilization of nutrients by post-metamorphic echinoderms. In: Jangoux, M., Lawrence J. M. (eds.) Echinoderm nutrition. A. A. Balkema, Rotterdam, p. 331–371Google Scholar
  27. Leighton, D. L. (1966). Studies of food preference in algivorous invertebrates of Southern California kelp beds. Pacif. Sci. 20: 104–113Google Scholar
  28. Levitan, D. R. (1988). Density-dependent size regulation and negative growth in the sea urchinDiadema antillarum Philippi. Oecologia 76: 627–629Google Scholar
  29. Märkel, K., Röser, U. (1983). Calcite-resorption in the spine of the echinoidEucidaris tribuloides. Zoomorphology 103: 43–58Google Scholar
  30. Märkel, K., Röser, U., Mackenstedt, U., Klostermann, M. (1986). Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoidea). Zoomorphology 106: 232–243Google Scholar
  31. Moss, J. E., Lawrence, J. M. (1972). Changes in carbohydrate, lipid, and protein levels with age and season in the sand dollarMellita quinquiesperforata. J. exp. mar. Biol. Ecol. 8: 225–239Google Scholar
  32. Nauen, C. E., Böhm, L. (1979). Skeletal growth in the echinodermAsterias rubens L. (Asteroidea, Echinodermata) estimated by45Ca-labeling. J. exp. mar. Biol. Ecol. 38: 261–269Google Scholar
  33. Pearse, J. S., Pearse, V. B. (1975). Growth zones in echinoid skeleton. Am. Zool. 15: 731–753Google Scholar
  34. Régis, M.-B. (1979). Croissance négative de l'oursinParacentrotus lividus (Lamarck) (Echinoidea: Echinidae). C. r. hebd. Séanc. Acad. Sci., Paris 288D: 355–358 (1979)Google Scholar
  35. Shimizu, M., Yamada, J. (1980). Sclerocytes and crystal growth in the regeneration of sea urchins test and spines. In: Omori, M., Watabe, N. (eds.) The mechanisms of biomineralization in animals and plants. Tokai University Press, Tokyo, p. 169–178Google Scholar
  36. Smith-Gill, S. J. (1983). Developmental plasticity: developmental conversionversus phenotypic modulation. Am. Zool. 23: 47–55Google Scholar
  37. Velimirov, B., King, J. (1979). Calcium uptake and net calcification rates in the octocoralEunicella papillosa. Mar. Biol. 50: 349–358Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • C. A. Lewis
    • 1
  • T. A. Ebert
    • 1
  • M. E. Boren
    • 1
  1. 1.Department of BiologySan Diego State UniversitySan DiegoUSA

Personalised recommendations